

Personal
Sticky Note

157 is count not required at pop?

Assembly Language
Programming and
‘Organization of
the IBM PC

Ytha Yu

Department of Mathematics and Computer Science
California State University, Hayward, California

-

Charles Marut . o
Department of Mathematics and Computer Science
California State University, Hayward, California

-

!.‘ " 4 Mitchell McGRAW-HILL

New York St. Louis San Francisco Auckland Bogotd Caracas

l}. ' Lisbon London Madrid Mexico Milan Montreal New Delhi
- Hy

Paris San Juan Singapore Sydney Tokyo Toronto Watsonville

ASSEMBLY LANGUAGE PROGRAMMING & ORGANIZATION OF THE IBM PC
Intemational Editions 1992

Exclusive nghts by McGraw-Hill Book Co-Singapore for manufacture and export. This book cannot
be re-exported from the country to which it is consigned by McGraw-Hill.

Copyright © 1992 by McGraw-Hill, Inc. All rights reserved. Except as permitied
under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

567890 KKP 98765

ISBN 0-07-072692-2

Sponsoring editor; Stephen Mitchell
LEditonrial assistant: Dernuse Nickeson
Director of Production: Jane Somers
Production assistant: Richard De Vitto
Project management: BMR

Library of Congress Catalog Card Number 91-66269

IBM 15 a registered Uademark of Intemational Business Maclunes, Inc
intel is a registered trademark of Microsoft Corporation.

When ordering this title, use ISBN 0-07-112896-4

Printed 1n Singapore

Dedication

In memory of my father, Ping Chau
To my mother, Monica
To my wife, Joanne and our children

Alan, Yolanda, and Brian .

For my parents, George and Ruth Marut

For Beth

Contents

Preface xiii

Chapter 1 1.1 The Components of a Microcomputer System 3.
Microcomputer Systems 1.1.1 Memory. 4 .
3 . 1.1.2 The CPU 7

1.1.3 I/O Ports . 9
1.2 Instruction Executlon 9
1.3 1/O Devices 11 .
1.4 Programmmg Languages 12
1.5 An Assembly Language Program 14
Glossary 15
Exercises 17

awter 2 2.1 Number Systems 19
k‘ resentation 2.2 Conversion Between Number Systems 22
of Numbers and 2.3 Addition and Subtraction 24
Characters 2.4 How Integers Are Represented in the Computer 26
19 2.4.1 Unsigned Integers 26

2.4.2 Signed Integers 26 |

2.4.3- Decimal Interpretation 28
2.5 Character Representation 30
‘Summary 33

Glossary 34 "
Exercises 34
Chapter 3 3.1 The Intel 8086 Family of Microprocessors 37
Organization 3.2 Organization of the 8086/8088 Microprocessors 39
3.2.1 Reglsters 39
Zf the IBM Personal 3.2.2 Data Registers: AX, BX, CX, DX 39
3;’""““’" ‘ 3.2.3 Segment Registers: CS, DS, S, ES 41

3.2.4 Pointer and Index Registers: SP, BP, SI, DI 44
' 3.2.5 Instruction Pointer: IP 45
3.2.6 FLAGS Reyister 4s -
"33 Organ\mtlon of the PC 45 .
3.3.1 The Operating System 46 ,
3.3.2 Memory Orgunization of the PC 47
3.3.3 1/O Port Addresses 49 -
3.3.4 " Start-up Qperation’ 49
“ Summary 49
Glossary 50
Exercises 51

viii Contents

Chapter 4

Introduction to IBM PC
Assembly Language

53

4.1

Assembly Language Syntax s$4

4.1.1 Name Field 54

4.1.2 Operation Field 55
4.1.3 Operand Field 55
4.1.4 Comment Field 55

.2 Program Data 56
3 Variables 57
4.3.1 Byte Variables 57
4.3.2 Word Variables 57
4.3.3 Arrays 58
4.4 Named Constants 59
4.5 A Few Basic Instructions 60
4.5.1 MOV and XCHG 60
4.5.2 ADD, SUB, INC, und DEC 62
4.5.3 NEG 64
.6 Translation of High-Level Language to Assembly Language 64
7 DProgram Structure 65
4.7.1 Memory Modcls 65
4.7.2 Data Segment 66
4.7.3 Stack Segment 66
4.7.4 Code Segment 66
4.7.5 [Putting It Togcther 67
4.8 Input and Output Instructions 67
4.8.1 INT 21hy467
"4.9 A First Progranv,
4.10 Creating and Running a Program 70
4.11 Displaying a String 73.
4.12 A Case Conversion Program 73
Summary 76
Glossary 77
. Exercises 78
B Programming Exercises 80

Chapter 5 5.1 The FLAGS Register 81

The Processor Status and 5.2 Overflow 83
the FLAGS Register 5.3 How Instructions Affect the Flags 85
5.4 The DEBUG Program 87

81

Summary 90

Glossary 91

Exercises 97
Chapter 6 6.1 An Example of a Jump 93
Flow Control 6.2 Conditional Jumps 94
Instructions 6.3 ‘The JMP Instruction -58

93 6.4 High-Level Languagc Structurge 98
: 6.4.1 Branching Structures 68
6.4.2 Looping Structures 104
6.5 Programming with High-level Structures 108
Summary 112
Glossary 113
Exercises 113
Programming Excrcises 115

Logic Instructions 118
__71.1_AND, OR,.and XOR Instructionsw119-
77712 NOT Instruction 124
7.1.3 TEST Instruction 122

7.2 Shift Instructions 722

Chapter 7 7.1
Logic, Shift, and
Rotate Instructions
117

Contents ix

4

7. 2 1 Left Shift Instructions 123
7.2.2 'Right Shift Instructions 125
7.3 Rotate Instructions 1274
7.4 Binary and Hex-1/O 130
Summary 134
Glossary 135
Exercises 13§ .
Programming Exercises 136

%am.tsn.&-
e Stack and Introduction

to Procedures

8.1 The Stack 139

8.2 A Stack Application. 144

8.3 Terminology of Procedures 146
8.4 CALL and RET 147-

8.5 An Example of a Procedure 150

Progranuning Exercises 159

139.
© Summary 157
Glossary 158
Exercises 158
Chaptel; 9

Multiplication and Division
Instructions
161

MUL and IMUL 161)

Simple Applications of MUL and IMUL 164
DIV and IDIV 165

Sign Extension of the Dividend 166
Decimal Input and Output Procedures 167
Summary 175

Exercises 176

Programming Exercises 177

Y00V
U W IN -

Zhapter 10 .-
Arrays and Addressing
Viodes

10.1 One-Dimensional Arrays 179
10.2 Addressing Modes 1871
10.2.1 Register Indirect Mode 182
10.2.2 Based ansd-Indexed Addressing Modes- 184
10.2.3 The PIR Operator and the LABEL I’scmlu -op 186
10.2.4 Segnent Override 188
10.2.5 "Accessing the Stack 189
10.3 An Application: Sorting an Array 189
10.4 Two-Dimensional Arrays 192
10.5 Based Indexed Addressing Mode 194
10.6 An Application: Averaging Test Scores 195
10.7 The XLAT Instruction 197

Programming Exercises ‘203

11.1 The Direction Flag 20s

179
Summary 200
Glossary 2071
Fxercises 201
hapter 11

he String Instructions
5 -

11.2. Moving a String 206.
11.3 Store String 209
11.4 Load String 211
11.5 Scan String 214
11.6 Compare String 217~
11.6.1 Finding a Substring of a String 219
11.7 General Form of the String Instructions. 223
Summary 224
Glossary 225
Exercises 225
Prograiniming Exercises 226

b Contents

Chapter 12 12.1 The Monitor 2371
Text Display and Keyboard i%% \{_ideto h?g(ajpt;rs and Display Modes 232
: 3 Tex e Programming 234
5;‘;9"""”""9 1231 The Attribute Byte 235
12.3.2 A Display Page Demonstration 237
12.3.3 INT 10H 238
12.3.4 A Comprehensive Example 243
12.4 The Keyboard 244
12.5 A Screen Editor 247
Summary 252
Glossary 253
Exercises 254
Programming Exercises 254

Chapter 13 13.1 Macro Definition and Invocation 257

Macros . 13.2 local Labels 262
257 13.3 Macros That Invoke Other Macros 263

13.4 A Macro Library 264 Yo
13.5 Repetition Macros 268 :

13.6 An Output Macro 270

13.7 Conditionals 272

13.8 Macros and Procedures 276

Summary 276

Glossary 277

Exercises 278

Chapter 14 14.1 .COM Programs 281
Memory Management 14.2 Program Modules 285 .
281 14.3 Full Segment Dcfinitions 291
14.3.1 Form of an .EXE Program with Full Segment Definitions 295
14.3.2 Using the Full Segment Definitions 295
14.4 More About the Simplified Segment Definitions 299
14.5 Passing Data Between Procedures 300
14.5.1 Global Variables 300
14.5.2 Passing the Addresses of the Data 302
14.5.3 Using the Stack 303
Summary 306
Glossary 306
Exercises 307
Programming Exercises 307

Chapter 15 15.1 Interrupt Service 309
BIOS and DOS 15.1.1 Interrupt Vector 310
15.1.2 Interrupt Routines 312
;notgerrupts 15.2 BIOS Interrupts 312
15.3 DOS Interrupts 316
15.4 A Time Display Program 316
15.5 User Interrupt Procedures 318
15.6 Memory Resident Program 322
Summary 329
Glossary 329
Exercises 330.
Programming Exercises 330

Contents

~—

16.1 Graphics Modes 337

16.2 CGA Graphics 333

16.3 EGA Graphics 339

16.4 VGA Graphics 340

16.5 Animation 3471

16.6 An Interactive Video Game 347
16.6.1 Adding Sound 347
16.6.2 Adding a Padidle 350

Programming Exercises 356

17.1 The ldea of Recursion 357

17.2 Recursive Procedures 358

17.3 Passing-Parameters on the Stack 360

17.4 The Activation Record 361

17.5 lImplementation of Recursive Procedures 363
17.6 “More Complex Recursion 367

Programming Exercises 370

Chapter 16

Color Graphics

331
Summary 355
Glossary 356
‘Lxercises 356

Chapter 17

Recursion

357
Summary 369
Glossary 369
Exercises 370

Chapter 18

Advanced Arithmetic
371

18.1 Double-Precision Numbers 371
18.1.1 Doile-Precision Addition, Subtraction, and Negation 372
18.1.2 Dauble-Precision Mudtiplication and Division 374
18.2 Binary-Coded Decimal Numbers 374
18.2.1 Packed and Unpacked BCD 375
~ 18.2.2' BCD Addition and the AAA Instruction 375
' 18.2.3 BCD Subtraction and the AAS Instruction 377
18.2.4 BCD Multiplication and the AAM Instruction 378
18.2.5 BCD Division and the AZD Instruction 378
18.3 Floating-Point Numbers 379-
18.3.1 Canverting Decimal Fractions into Binary 379
18.3.2 Floating-Point Representation 380
18.3.3 Floating-Point Qperations 380
18.4 The 8087 Numeric Processor 381
18.4.1 Data Types 381
18.4.2 8087 Registers 382
18.4.3 lIustructions 382
18.4.4 Multiple-Precision Integer 1/0 384
18.4.5 Real-Number 1/O 389
Summary 391
Glossary 392
Lxercises 393
Programming Exercises 394°

Chapter 19
Disk and File
Operations
395

19.1 Kinds of Disks 395
19.2 Disk Structure 397
19.2.1 Disk Capacity 398
19.2.2 Disk Access 399
19.2.3 File Allocation 399
19.3 File Processing 402 .
19.3.1 File Handle 402
19.3.2 File Lriors 403
19.3.3 Opening and Closing o File 403
19.3.4 Reading a File 405

xi

xi Contents

19.3.5 Writing u File 406
19.3.6 A Progra:n to Read and Display a File 406
19.3.7 The Filc Pointer 410
19.3.8 Changing a File's Attribute 414
19.4 Direct Disk Operations 415
19.4.1 INT 25hh and INT 26h 415
Summary 418
Glossary 419 .
Excrcises 420
Programming Exercises 420

Chapter 20
Intel’s Advanced
Microprocessors
421

20.1 The 80286 Microprocessor 421
20.1.1 Extended Iustruction Set 422
20.1.2 Real Address Mode 423
20.1.3 Protected Mude 424
20.1.4 Extended Memory 426

20.2 Protected-Mode Systems 429
20.2.1 Windows and 0S/2 430
20.2.2 Programming 431

20.3 80386 and 80486 Microprocessors 433
20.3.1 Real Address Mode 433
20.3.2 Protected Mode 433
20.3.3 Programming the 80386 434

Summary 437

Glossary 437

Exercises 438

Programmiing Exercises 438

Appendicies
439

.

Appendix A 1BM Display Codes 447
Appendix B DOS Commands 445
Appendix C BIOS and DOS Interrupts 449
Appendix D MASM and LINK Options 461
Appendix E DEBUG and CODEVIEW 477
Appendix F Assembly Instruction Set 489
Appendix G Assembler Directives 517
Appendix H o Keyboard Scan Codes 527

index
531

- Preface

Hardware and Software
Requirements

This book is the outgrowth of our experience in teaching assembly

‘language at California State University, Hayward. Our goal is to write a text-

book that is easy to read, yet covers the topics fully. We present the material
in a logical order and explore the organization of the IBM PC with practical
and interesting examples.

Assembly language is really just a symbolic form of machine lan-
guage; the language of the computer, and because of this, assembly language
instructions deal with computer hardware in o very intimate way. As you
learn to program in assembly language you also learn about computer orga-
nization. Also because of their close connection with the hardware, assembly
language programs.can run faster and take up less space in memory than
high-level language prograins—a vital consideration when writing computer
game programs, for instance..

While this book is intended to be used in an assembly language
programming class taught in a university or community college, it is written

-in a tutorial style and can be read hy anyone who wants to learn about the

IBM PC and how to get the most out of it. Instructors will find the topics
covered in a pedagogical fashion with' numerous examples and exercises.

It is not necessary to. have prior knowledge of computer hardware
or programming to read this book, although it helps if you have written
programs in some high-level language like Basic, Fortran, or Pascal.

N

To do the programming assignments and demonstrations, you need to own
or have access to the following:

An IBM PC or compatible.

The MS-DOS or PC-DOS operating system.

3. fAccess to assembler and linker software, such as Microsoft’s
MXASM and LINK, or Borland’s TASM and TLINK. C

4. &n editor or word processing program.

19

xiii

xiv Preface

Balanced Presentation The wortld of IBM PCs and compatibles consists of many different computt’
models with different processors and structures. Similarly, there are differcent
versions of assemblers and debuggers. We have taken the following approach
to balance our presentation:

1. Empbhasis is on the architecture and instruction set for the
8086/8088 processors, with a separate chapter on the advanced
processors. The reason is that the methods learned in program-
ming the 8086/8088 are common to all the Intel 8086 family be-
cause he instruction set for the advanced processors is largely
just an extension of the 8086/8088 instruction set. Programs writ-
ten for the 8086/8088 will execute without modification on the
advanced processors.

2. Simplified segment definitions, introduced with MASM 5.0, are
used whencever possible.

3. The DOS environment is used, because it is still the most popular
operating system on PCs.

4. DEBUG is used tor debugging demonstrations because it is part of
DOS and its general features are common to all assembly debug-
gers. Microsoft’s CODEVIEW is covered in Appendix E.

Features of the Book All the materials have been classroom tested. Some of the features that we
believe make this book special are:

Writing programs early

You- are naturally eager to start writing programs as soon as possible.
However, because assembly language instructions refer 1o the hardware, you,
first need to know the essentials of the machine architecture and the basics
of the binary and hexadecimal number systems. The first program appears
in Chapter 1, and by the end of Chapter 4 you will have the necessary tools
to write simple but interesting programs.

Handling input and output

Input and output in assembly language are difficult because the in-
struction set is so basic. Our approach is to program input and output by
using DOS function calls. This enables us to present completely functioning
programs carly in the book. :

Structured code

The advantages of structured progranmuning in high-level languages
carry over to asseinbly language. In Chapter 6, we show how the standard
high-level branching and looping structures cail be implemented in assembly
language; subsequent programs are developed from a high-level pseudocode
in a top-down manner.

Definitions

To have a clear understanding of the ideas of assembly language
programming, it's important to have a finn grasp of the terminology. To
facilitate this, new terms appear in boldface the tirst time they are used, and
are included in a glossary at the end of the chapter.

i

Note to Instructors -

Exeicises

Instructor’s Manual

Student Data Disk

Preface XV

' Advanced applications . i

One of the fun things that can easily be done in assemb]y]anguage
is manipulating the keyboard and screen. Two chapters are devoted to this
topic; the high point is the development of a video game similar to Pong.
Another interesting application is the development of a memory resident
program that displays and updates the time.

Numeric processor

The operatlons and instructions of the numeric processor are given
detailed treatment.

.

Advanced processors .

The structure and operations of the advanced processors are covered
in a separate chapter. Because DOS is still the dominant operating system
for the PC, most examples are DOS applications.

The book is divided into two parts. Part One covers the topics that are basic
to all applications of assembly language; Part Two is a collection of advanced
topics. The following table shows how chapters in Part Two depend on ma-
terial from earlier chapters:

Chapter Uses material from chapters
12 1-10

13 1-11, 12 (some exercises)
14 1-10

15 1-12, 14

16 1-15

17 1-10

18 1-10, 13

19 1-10

20 1-11, 13, 14

The chaptcrs in Part One should be covered in sequence. if the stu-
dents have strong backgrounds in computer science, Chapter 1 can be cov-
ered lightly or be assigned as independent reading. In a ten-weck course that
meets four hours a week, we are usually able to cover the first four chapters
in two weeks, and make the first programming assignment at the end of the
sccond week or the beginning of the third wecek. In ten weeks we are usually
able to cover chapters 1-12, and then o on to choose topics from chapters
13-16 as time and interest atlow. “

Every chapter ends with numerous exercises to reinforce the concepts and
principles covered. The exercises are grouped into practice exercises and pro-
gramming cxerciscs.

A comprehensive instructor’s manual is available. It includes general com-
ments, programming hints, and solutions to the practice exercises. it also
includes a sct of transparency masters for figuges and program llSUn&S.

A student data disk containing the source code for the programs in the text
is available with the accompanying instructor’s manual.

xvi Preface

Acknowledgments

We would like to thank our editor, Raleigh Wilson, and the staff at Mitchell
McGraw-Hill, including Stephen Mitchell, Denise Nickeson, Jane Semers,
and Richard de Vitto, for thcir support in this project. We would like to
thank the staff at BMR, especially Matt Lusher, Jim Love, and Alex Leason
for their outstanding work in producing this book.

We would also like to thank our students for their patience, support,
and criticism as the manuscript developed. Finally, our thanks go to the
following reviewers, whose insights helped to make this a much better book:

David Hayes, San jose State University, San Jose, Cahforma

Jim Ingram, Amarillo College, Amarillo, Texas

Linda Kieffer, Cheney, Washington

Paul LeCoq, Spokanc Falls Community College, Washington
Thom Luce, Ohio University, Ohio

Lric Lundstrom, Diablo Valley College, Plcasant Hill, California
Mike Michaclson, Palomar College, San Marcos, California

Don Myers, Vincennes University, Vincennes, Indiana

Loren Radford, Baptist College, Charleston, Soutli Carolina
Francis Rice, Oklahoma State University, Oklahoma

David Roscnlof, Sacramento City College, California

Paul W. Ross, Millersville State University, Pennsylvania

R.G. Shurtleff, Colorado ‘technical College, Colorado

Mel Stone, St. Petershurg Jr. College, Clearwater Campus, Florida
James VanSpevboeck, St Ambrose College, Davenport, lowa
Richard Weisgerber, Mankato State University, Mankato, Minnesota

W would appreciate any comments that you, the reader, may offer.
Correspondence should be addressed to Ytha Yu or Charles Marut, Depart-
et of Matbematics and Computer Science, Calitornia State Unliversity,
Havward, Hayward Calitoria 94542, Internet electronic mail should be ad-
dressed to yyuwseq.csuhayward.edu or cmaruteseq.csuhayward.edu.

Part One

Elements of
Assembly Language
Programming

Mlcrocomputer

Systems

Overview

This chapter provides an introduction to the architecture of micro-
computers in general and to the IBM PC in particular. You will learn about
the main hardware components: the central processor, memory, and the
peripherals, and their relation to the software, or programs. We'll see exactly
what the computer does when it executes an instruction, and discuss the
main advantages (and disadvantages) of assembly language programming. It
you are an experienced microcomputer user, you are already familiar with
most of the ideas discussed here; if you are a novice, this chapter introduces
many of the important terms used in the rest of the book.

1.1 _

The Components
of a Microcomputer
System

Figure 1.1 shows a typical microcomputer system, consisting of a
system unit, a keyboard, a display screen, and disk drives, The system unit
is often referred to as “the computer,” because it houses the circuit boards
of the computer. The keyboard, display screen, and disk drives are called 1/0
devices because they perform input/output operations for the computer
They are also called peripheral devices or peripherals.

integrated-circuit (IC) chips are used in the construction of romputer

circuits. g hIC cnig may con;axg wndreds or even thousands of transistors.
These IC circuits are known as digital circuits because they operate on

discrete voltage signal levels, iypicalgy, ﬁigh voltage and a low voltage. We

use the symbols 0 an to represent the low- and high-voltage signals,
respectively. These symbols are called ‘binary digits, or bits, All information
processed by the computer is represented by strings of Os and 1's; that is,

by bit strings.

4 1.1 The Components of a Microcomputer System

Figure 1.1 A Microcomputer
System

Functionally, the computer circuits consist of three parts: the cen-
tral processing unit (CPU), the memory circuits, and the 1/O circuits. In
a microcomputer, the CPU is a single-chip. Processor ¢ called 2 mlcrop
sor. The CPU is the brain of the computer, and it controls ali operations. It

uses the memory circuits to store information, and the 1/O drcults to com-
munlcate with 1/0 devices. - :

The System Board

Inside the system unit is a main circuit board called the. system”
board, which contains the microprocessor and memory circuits. The sysiem
board is also cailed a motherboard because it contains expansion slots,
which are connectors for additional circuit boards called add-in boards or

add-in cards. 1/Q circuits are usually located on add-in cards. Figure 1.2
shows the picture of a motherboard.

1.1.1
Memory

Bytes and Words :

Information processed by the computer is stored in its memory. A
memory circuit_element_can store one bit of data. Howeves, the memory
circuits are usually organized into groups that can store eight bits of dags,
and a string of eight bits is called a byte. Each memory byte circuit—or
memory byte, for short—is identified by a number that is called its ad-

*ress, like the street address of a house. The first memory byte has address

-~

“Figwe 12 A Motherboard

Chapter 1 Microcomputer Systems 5.

- : . v

0. The data wured in a memory byte are called its ggntents. When the
contents of a memory byte are treated as a single number, we often use the
term vglue to denote them. - o : :

It is important to understand the difference between address and
contents. The address of a memory byte is fixed and is different from the
address of any other memory byte in the computer. Yet the contents of a
memory byte arc not unique and are subject to change, because they denote

the data currently being stored. Figure 1.3 shows the organization of memory

bytes; the contents are acbitrary. -) _
Another distinction between address and contents is that while the
contents of a memory byte are always eight bits, the numbeér of bits in an

Figure 1.3 Memory
Represented as Bytes

~ Address Contents
7 00101 v 01
6 110011 10
S 00001 101
a 1110 1 01
3 000000O0O0OU0
2 LI T IR T S B B |

R 010111 10
0 01100001

6 -1.1 The Components of a Microcomputer System

address depends on the processor. For example, the Intel 8086 microprocessor
assigns a 20-bit address, and the Intel 80286 microprocessor uses a 24-bit
address. The number of bits used in the address determines the number of _
bytes that can be accessed by the processor.)

Example 1.1 Suppose a processor uses 20 bits for an address. How
many memory bytes can be accessed?

Solution: A bit can have two possible values, so in a 20-bit address
there can be 2% = 1,048,576 different values, with each value beiny the
potential address of a memory byte. In computer terminology, the num-
ber 2% is called 1 mega. Thus, a 20-bit address can be used to address

1 megabyte or 1 MB.

In a typical microcomputer, two bytes form a word. To accommo-
date word data, the IBM PC aljows any pair of successive memory bytes to
be treated as a single unit, called a memory word. The lower address of
the two memory bytes is used as the address of the memory word. Thus the
memory word with the address 2 is made up of the memory bytes with the
addresses 2 and 3. The microprocessor can always tell, by other information
contained in each instruction, whether an address refers to a byte or a word.

In this book, we use the term memory location to denote either
a memory byte or a memory word.

Bit Position”

Figure 1.4 shows the bit positions in a microcomputer word and a
byte. The positions are numbered from right to left, starting with 0, In a
word, the bits 0 to 7 form the low byte and the bits 8 16 15 form the high
byte. Tor a word stored in memory, its low byte comes from the memory

Lyte with the lower address and its high byte is from the memory byte with
the higher address.

Memory Operations .-

v
The processor can perfornin two operations on memory: read (fetch)
the contents of a location and write (store) data at a location. In a read
operation, the processor only gets a copy of the data; the original contents

Figure 1.4 8it Positions in a
Byte and a Word

a4 3

HENEREEN

Byte bit
position

Weord bit ‘
position

15 14 13 12 11 10 9 8 7 &6 S 4 3 2

HREEELEERNEEEE

f————— High byte

L]

Low byte

2

Chapter 1 Microcomputer Systems 7

I?iaure 1.5 Bus Connections
of a‘Microcomputer

. Address bus)
CPU Memory o
{T “ Control bus II “ “ W
. ‘Data bus

of the location are unchanged. In a write operatiqn, the data written becoine
the new contents of the Iocation, the origmal cofntents are thus lost.

W&

: There are two kinds of memory circuits; random access memory
(RAM) and rcad-only memory (ROM). The difference is that RAM loca-
tions can be read and written, while, as the name implies, ROM locations
can only be read. This is because the contents of ROM memery;-ange Ini-
tialized, cannot be changed.)

Program instructions and data are normally loaded into RAM mein-
ory. However, the contents of RAM memory are lost when the machine is
turned off, so anything valuable in RAM must be saved on a disk or printed
out beforchand. ROM ciscuits retain thelr values even when the power is off.
Conscquently, ROM is used by computer manufacturers to store systefn pro-
grams. These ROM-based programs are known as firmware. Théy are ret

sponsible for IE#L'EM‘DS from disk as well as for self-testing -
the computer When it is turned ong

Buses

" A processor communicates with memory and 1/Q.circults by using
signals that travel along a set of wires or connections calied huses that
connect the different components. There are three kinds of signals: address,

-data, and control. And there are three buses: nddress bus, data bus, and

control bus. For example to read the contents of a memory location, the
CPU places the address of the memory location on the address bus, and it
receives the data, sent by the memory circuits, on the data bus.: A control
signal ic required to inform the memory to perform a read operation. The
CPU sends the contyol signal on the control bus. Figure 1.5 is a diagram of

_the bus connections for a microcomputer.

112
The CPU

_As stated, the CPU is the brain of the computer. It controls the com-
puter. by executinx, programs stored in memory. A program might be a system
program or an application program.written by a user. In any case, each
insttuction that the CPU executes is a bit string (for the Intel 8086, instruc-
tions are from one to six bytes long). This language of 0's and 1’s is called
machine language. 4

. 1.1 The Comyanents of a Mirocomputer System - |

Fgure 1.6 Intel 8086
Microprocessor Organization

-

Execution Unit (EU) Bus lnterfaco- Unit.
AX I '
BX |
x .
) DX I L
General registers T I
5P CS
o >
DI ! =
| P
AL T
T
|

D o

control (:::> External bus

logic

< - Internal bus
TE ¥

b’emporary registers_] l

!
i Instruction queue
|
|

‘The instructions perfornied by a CPU are called its instruction sct,
and the instruction set for each CPU is unique. To keep the cost of computers
down, machine language instructions are designed to be simple; for example,
adding two numbers or moving a number from one location to another. The
amazing thing about computers is that the incredibly complex tasks they
perform are, in the end, just a sequence of very basic operations.

In the following, we will use the Intel 8086 microprocessor as an
example of a CPU. Figure 1.6 shows its organization. There are two main
components: the execution unit and the bus interface unit.

Executibn Unit (EU)

As the name implies, the purpose of the execution unit (EU) is to
execute instructions. It contains a circuit called the arithmetic and logic
unit (ALU). The ALU can'perform arithmetic (+, -, x ,/) and logic (AND,
OR, NQT) operations. The data for the operations are stored in circuits called
registers. A register is like a memory location except that we normally refer
to it by a name rather than a number. The EU has eight registers for storing
data; their names are AX, BX, CX, DX, SI, DI, BP, and SP. We’ll become
Zcquainted with them in Chapter 3. In addition, the EU contains temporary
registers for holding-operands for the ALU, and the FLAGS register whose
individual bits reflect the result of a computation.

" Chapter 1 Microcomputer Systems 9

Bus Interface Unit (BIU)1n,

) The bus interface unit (BlU) facilitates communication betv,uzcl ‘he

EU and the memory or J/O circuits. It is responsible for transmittir~ ad-
dresses, data, and control signals on the buses. Its registers are named CS,
DS, ES, SS, and IP; they hold addresses of memory locations. The IP
(instruction pointcr) contdins the address of the next instruction to be
executed by the EU.
: The EYJ and the BIU are connected by an internal bus; and they work
together. While the EU is executing an instrucuon the BIU fetches up to six
bytes of the next instruction and places them in the instruction queue. This
operation is called instructiongrefetch. The purpose is to speed up the pro-
cessor. If the EU needs to communicate with memory or the peripherals, the
BIU suspends instruction prefetch and performs the needed aneratiansa™

1.1.3
110 Ports

. 1/O devices are connected to the computer through 170 circuits. Each
of these circuits contains several registers called I/0 ports. Some are used
for data while others are used for control commands. Like memory locations,
the I/O ports have addresses and are connected to the bus system. However,
these addresses are known as I/O adidresses and can only be used in input or
output instructions. This allows the CPU to distinguish between an 1/O port
and a memory location.

I/O ports function as transfer points between the CPU and 1/0 de-
vices. Data to be input from an I/O device are sent to a port where they can

_be read by the CPU. On output, the CPU writes data to an 1/O port The 1/O

circuit then transmlts the data to the 1/0O device.

Serial and Parallel Ports

The data transfer between an 1/O port and an I/O device can be 1
bit at a time (serial), or 8 or 16 bits at a time (parallel). A parallel port requircs
more wiring conneéctions, while a serial port tends to be slower. Slow devices,
like the keyboard, always connect 1o a serial port, and fast devices, like the

- disk drive, always connect to a paralicl port. But some devices, like the

printer, can connect to either a serial or a parallel port.

1.2
Instruction
Execution

To understand how the CPU operates, let’s look at how an instruction
is executed. First of all, a machine instruction has two parts: an opcode and
operands. The opcode specifies the type of operation, and the operands are
often given as memory addresses to the data to be operated on. The CPU
goes through the following steps to execute a machine instruction (the
fctch-exccute cycle):

Fetch
1. Fetch an instruction from memory.

2. Decode the instruction to determine the 6petation.
3. Fetch data from memory if necessary.

.

1.2 Instruction Execution

Execute

4. Perform the operation on the data.
5. Store the result in memory if needed.

To see what this entails, let's trace through the execution of a typical machine
language instruction for the B086. Suppose we look at the instruction that
adds the contents of register AX to the contents of the memory word at
address 0. The CPU actually adds the two numbers in the ALU and then
stores the result back to memory word 0. The machine code is

00000001 00000110 00000000 006000000
Before cxecuti_bn, we assumc that the first byte of the instruction is stored

" at the location indicated by the IP.
1.

Fetch the instruction. To start the cycle, the BIU places a mem-
ory rcad requcst on the control bus and the address of the in-
struction on the address bus. Memory responds by sending the
contents of the location specified—namely, the instruction

.code just given—over the data bus, Because the instruction

code is four bytes and the 8086 can only rcad a word at a
time, this involves two read operations. The CPU accepts the
data and adds four to the IP so that the IP will contain the ad-
dress of the next instruction.

Decode the instruction. On receiving the instruction, a decoder
circuit in the EU decodes the instruction and determines that it is
an ADD operation involving the word at address 0.

Fetch data from memory. The EU informs the BIU to get the con-
tents of memory word 0. The BIU sends address O over the ad-
dress bus and a memory read request is again sent over the
control bus. The contents of memory word 0 are sent back over
the data bus to the EU and are placed in a holding register.
Perform the operation. The contents of the holding register and
the AX register are sent to the ALU circuit, which performs the re-
quired addition and holds the sum.

Store the result. The LU dirccts the BIU to store the sum at ad-
dress 0. To do so, the BIU sends out a memory write request over
the control bus, the address 0 over the address bus, and the sum
to be stored over the data bus. The previous contents of memory
word 0 are overwritten by the sum.

The cvcle is now repeated for the instruction whose address is con-

tained in the 11

Timing
The preceding example shows that even though machine instructions

are very simple, their execution is actually quite complex. To ensure that the
steps are carried out in an orderly fashion, a clock circuit controls the processor

‘fgure 1.7 Train of Clock
‘ulses

Voltage

Mo

-

1 period ¥

Chapter 1 Microcomputer Systems 1

by generating a train of clock pulses as shown in Figure 1.7. The time interval
between two pulses is known as a clock period, and the number of pulses per
second is called the clock rate or clock speed, measured in megahertz
(MHz). Onc megahertz is 1 million cycles (pulses) per second. The original
IBM IC had a clock rate of,4.77 MHz, but the latest PS/2 model has a clock
rate of 33 MHz.

i The computer cu'cuxts are acuvated by the clock pulses; that is, the
circuits perform an operation only when a clock pulse is present. Each step
in the instruction fetch and execution cycle requires one or more clock pe-
riods. For example, the 8086 takes four clock periods to do a memory read
and a multiplication operation may take more than seventy clock periods.
If we speed up the clock circuit, a processor can be made to operate faster.

. However, each processor has a rated maximum clock specd beyond which

it may not function properly. .

137
1/0 Devices

I/0 devices are needed to get information into and out of the com-
puter. The primary /O devices are magnetic disks, the keyboard, the display

monitor, and the printer.

" Magnetic Disks

We've seen that the contents of RAM are lost when the computer
is turned off, so magnetic disks are used for permanent storage of programs
and data. There are two Kinds of disks: floppy disks (also called diskettes)
and hard disks. The device that rcads and writes data on a disk is called

" a disk drive.

Floppy disks come in 5Va-inch or 314-inch diamcter sizes. They are
lightweight and portable; it is casy to put a diskette away for safekeeping or
use it on different computers. The amount of data a floppy disk can hold
depends on the l)g(, it anges from 360 kilobytes to 1.44 megabytes. A
kilebyte (KB) is 2" bytes. .

. A hard disk and its disk drive arc enclosed in a hermetically sealed
container that is not removable from the computer; thus, it is also called a
fixed disk. It can hold a lot more data than a floppy disk—typically 20,
40, to over 100 megabytes. A program can also access information on a hard
disk much faster than a floppy disk.

. Disk operations are covered in Chapter 19.

4

Keyboard

" The keyboard allows the user to enter information into the computer.
It has the keys usually found on a typewriter, plus a number of control and
function keys. It has its own microprocessor that sends a coded signal to the
computer whencver a key is pressed or released.

When a key is pressed, the corresponding key character normally
appcars on the screen. But interestingly cnough, there is no direct conncction
between the keyboard and the screen. The data from the keyboard are re-
ceived by the current running program. The program must send the data to
the screen before a character is displayed. In Chapter 12 you will learn how
to control the keyboard.

12 1.4 Programming Languages

Display Monitor

The display monitor is the standard output device of the computer.
The information displayed on the screen is generated by a circuit in the com-
puter called a vidco adaptcr. Most adapters can gencrate both text characters
and graphics images. Some monitors are capable of isplaying in color.

We discuss text mode operations in Chapter 12, and cover graphics
mode in Chapter 16.

_ Printers

Although monitors give fast visual feedback, the information is not
permanent. Printers, however, are slow but provide more permanent output.
Printer outputs are known as hardcopies.

The three common kinds of printers are daisy wheel, dot matrix, and
laser printers. The output of a daisy wheel printer is similar to that of a typewriter.
A dot matrix printer prints characters composed of dots; depending on the
number of dots used per character, some dot matrix printers can generate
near-letter-quality printing. The advantage of dot matrix printers is that they
can print characters with different fonts as well as graphics.

The laser printer also prints characters composed of dots; however,
the resolution is so high (300 dots per inch) that it has typewriter quality.
The laser printer is expensive, but in the field of desktop publishing it is
indispensable. It is also quiet compared to the other printers.

14
Programming
Languages

.

The operations of the computer’s hardware are controlled by its
software. When the computer is on, it Is always in the process of executing
instructions. To fully understand the computer’s operations, we must also
study its instructions.

Machine Language

A CPU can only exccute machine language instructions. As we’ve
scen, they are bit strings. The {ollowing Is a short machine language program
for the IBM PC: ‘

Machine instruction Operation :

10100001 000CO0CH 00000000 Fetch the contents of memory word
and put it in register AX. -

00000101 00000100 00000000 Add 4 to AX. ks

10100011 00000000 00000000 Store the contents of AX in rnemory
word 0.

As you can well imagine, writing programs in machine language is
tedious and subject to error!

Assembly Language .

A more convenient language to use is assembly language. in as-
sembly language, we use symbolic naines to represent operations, registers,
and memory locations. If location 0 is symbolized by A, the preceding pro-

gram expressed in IBM PC assembly language would look like this:

Chapter 1 Microcgmputer Systems 13

Assembly language instruction Comment

MOV .AX,A ;fetch the contents of
- ;location A and
;put it in- register AX
ADD AX, 4 ;add 4 to Ax .
MOV A, AX ;move the contents of AX
: : ;into location A

A program written in assembly language must be converted to machine lan-
guage before the CPU can execute it. A program called the assembler trans-
lates each assembly language statement into a single machine language
mstructlon -

High-LeveI [anguages

Y

Even though it's easier to write programs in assembly language than
machine language, it's still difficult because the instruction set is so primitive.
That is why high-level languages such as I,QJ.{'LRAN Pascal, C, and others
were developed. Different high-level languages are desx;,nqd for different ap-
plications, but they generally allow programmers to write programs that look
.more like natural language text than is possible in assembly language.

A program called a compiler is needed to-translate a high-level lan-
guage program into machine code. ¢ wi.pilation is more involved than assem-
bling because it entails the translation of compiex mathematical expressions and
natural language commands into simple machine operations. A high-level lan-
guage statement typically translates into many machine language instructions.

Advantages of High-Level Languages),

There are many reasons why a programmer might choose to write
a program in a high-level language rather than in assembly language.

First, becausc high-level languages are closer to natural languages,
it's easier to convert a natural language algorithm to a high-level language
program than to an assembly language program. For the same reason, it’s
easier to read and -understand a high-level language program than an assem-
bly language program.

Second, an assembly language program generally contains more
statements than an equivalent high-level language program, so more time
is nceded to code the assembly language program.

Third, because each computer has its own unique assembly language,
assembly language programs are limited to one machine, but a high-level
language program can be executed on any machine that has a compiler for
that language.

Advantages of Assembly Languages

The main reason for writing assembly language programs is effi-
clency: because assembly language is so close to machine .language, a well-
written assembly language program produces a faster, shorter machine
language program. Also, some operations, such as reading or writing to spe-
cific memory locations and 1/O ports, can be done easily in assembly lan-
. guage but may be impossible at a higher level.

Actually, it is not alway$ necessary for a programmer to choose be-
tween assembly language and high-level Janguages, because many high-level
languages accept subprograms written in assembly language. This means that

14

1.5 An Assembly Language Program

crucial parts of a program can be written in assembly language, with the rest
written in a high-level language.

In addition to these considerations, there is another reason for
learning assembly language. Only by studying assembly language is it
possible to gain a feeling for the way the computer “thinks” and why
certain things happen the way they do inside the computer. High-level
languages tend to obscure the details of the compiled machine language

' program that the computer actually executes. Sometimes a slight change

in a program produces a major increase in the run time of that program,
or arithmetic overflow unexpectedly occurs. Such things can be under-
stood on the assembly language level.

Even though here you will study assembly language specifically for,
the IBM PC, the techniques you will learn are typical of those used in any
assembly language. Learning other assembly languages should be relatwely
easy after you have read this book.

b
MAssembly
nguage Program

- MAIN .

To give an idea of what an assembly language program looks like, here
is a simple example. The following program adds the contents of two memory
locations, symbolized by A and B. The sum is stored in location SUM.

Program Listing PGM1_1.ASM
TITLE PGM1_1: SAMPLE PROGRAM

.MODEL SMALL
.STACK 100H
.DATA

A DW 2

B DW 5

SUM DW 2
.CODE

MAIN PROC

;initialize DS
MOV AX,@CATA
MOV DS, AX
;add the numbers
MOV AX,A
ADD AX,B
MOV SUM, AX
to DOS
MOV AX, 4CGOH
INT 21H
“ENDP
END MAIN

;AX has A

;AX has A+B
;SUM = A+B
jexit

Assembly language prog,rams consist of statéments. A statement is
either an instruction to be cxecuted when the program is run, or a directive
for the assembler. For example, MODEL SMALL is an assembler directive
that specifies the size of the progrdth. MOV AX,A is an instruction. Anything
that follows a semicolon is a comment, and is ignored by the assembler.

Chapter 1 Microcomputer Systems 15

The preceding program consists of three parts, or segments: the stack
segment, the data segment, and the code segment. They begin with the directives
STACK, .DATA, and .CODE, respectively.

The stack segment is used for temporary storage of addresses and
data. If no stack segment is declared, an error message is generated, so there
must be a stack segiment even if the program doesn’t utilize a stack.

Variables are declared in the data segment. Each variable is assigned

- space in memory and may b€ initialized. For example, A DW 2 sets aside a
memory word for a variable called A and initializes it to 2 (DW stands for,
“Define Word"). Similarly, B DW § sets aside a word for variable B and ini-
tializes it to 5 (these initial values were chosen arbitrarily). SUM DW ? sets
aside an uninitialized word for SUM.

. Aprogram’s instructions are placed in the code segment. Instructions
are usually organized into units called prgcedyrgs. The preceding program has
only one procedure, called MAIN, which begins with the line MAIN PROC

B and ends with line MAIN ENDP.

The main procedure begins and ends with instructions that are
needed to initialize the DS reglster and to return to the DOS operating system.
Their purpose is explained in Chapter 4. The instructions for adding A and
B and puttmg the answer in SUM are as follows:

MOV-AX, A ,Ax has A .
ADD AX,3 ;AX has A+B
MOV- SUM AX ;SUM = A+B

MOV AX,A copies the contents of word A mto register AX. ADD AX,B adds
the contents of B to it, so that AX now holds the total rL MOV SUM,AX
stores the answer in variable SUM.'

. Before this program could be run on the computer, it would have
to be assembled into a.machine language program. The steps are explained
in Chapter 4. Because there were no output instructions, we could not see
the answer on the screen, but we-could trace the program’s execution in a
debugger such as the DEBUG program.

Glossary
_add-in board or card) Circuit board that connects to the
. " motherboard, usually contains 1/O cit-
cuits or additional memory
address A number that identifies a memory location
address bus The set of electrical pathways for address
_ signals)
arithmctic and logic unit, CPU circuit where arithmetic and logic
" ALU operations are done
asscmblcr A program that translates an assembly lan-
L. guage program into machine language
assembly language Symbolic representation of machine lan-
e - guage
‘binary digit A symboi that can have value 0 or 1
bit s : Binary digit
bus | A set of wires or connections connecting

the CPU, memory, and I/Q ports

16

Glossary

bus interface unit, BIU

byte
central processing unit,
Ccru

clock period
clock pulse

clock rate

clock speced
compiler

contents

control bus
data bus
digital circuits

disk drive

cxccution unit, EU
expansion slots

fetch-execute cycle
firmware

fixed disk
floppy disk
hardcopy
hard disk
1/0 devices

1/0 ports
instruction pointer, IP

instruction sct

kilobyte, KB
machine language

Part of the CPU that facilltates communi-
cation between the CPU, memory, and
1/0 ports ’

8 bits

The main processor tircuit of a computer

The time interval between two clock pulses
An electrical signal that rises from a low
voltage to a high voltage and down again
to a low voltage, used to synchronize
computer circuit operations

The number of clock pulses per second,
measured in megahertz (MFiz)

Clock rate

A program that translates a high-level lan-
guage to machine language

The data stored in a register or memory
location

The set of electrical paths for control signals
The set of electrical paths for data signals
Circuits that operatc on discrete voltage

levels

The device that reads and writes data on
a disk

Part of the CPU that executes instructions
Connectors in the motherboard where
other circuit boards can be attached
Cycle the CPU goes through to execute
an instruction”

Software supplied by the computer manu-
facturer, usually stored in ROM

_Nonremovable disk, made of metal

Removable, flexible disk

Printer output

Fixed disk

Devices that handle input and output
data of the computer; typical 1/0 devices
are display monitor, disk drive, and
printer

Circuits that function as transfer points
between the CPU and 1/0 devices

A CPU register that contains the address
of the next instruction

" The instructions the CPU is capable of

performing
2'% or 1024 bytes

Instructions coded as bit strings: the lan-
guage of the computer

_ mega

megabyte, MB
megahcertz, MHz
memory byte (circuit)
mcmory location
memory word
microprocessor

motherboard

opcode

.

operand

Chapter 1 Microcomputer Systems 17

A unit that usually denotes 1 million, but
in computer terminology 1 mega is 2%
(or 1,048,576)

22% or 1,048,576 bytes

1,000,000 cycles per second

A memory circuit that can store one byte
A memory byte or memory word

Two memory bytes

A processing unit fabricated on a single
circuit chip

The main circuit board of the computer
Numeric or symbolic code denoting the
type of operation for an instruction

The data specified in an instruction

1/O device

random access memory, Memory circuits that can be read or
RAM written

rcad-only memory, ROM Memory circuits that can only be read
i A CPU circuit for storing information
Motherboard

Computer circuit that converts computer
data into video signals for the display
monitor

word _ 16 bits

peripheral (device)

register
system board
video adapter

Exercises

1. Suppose memory bytes 0-4 have the following contents:

Address Contents
0 01101010
1 11011101
2 00010001
3 IRRRRRRE!
1 01010101

a. Assuming that a word is 2 bytes, what are the contents.of

the memory word at address 27
the memory word at address 37
¢ the memory word whose high byte is the byte at address 2?

b. What is
o tit 7 of byte 27
¢ bit O of word 3?
e bit 4 of byte 2?
e bit 11 of word 2?

18

Exercises

.

A nibble is four bits. Each byte is composed of a high nibble and
a low nibble, similar to the high and low bytes of a word. Using
the data in exercise 1, give the contents of

a. the low nibble of byte 1.

b. the high nibble of byte 4.

The two kinds of memory are RAM and ROM. Which kind of
memory

a. holds a user’s program?

b. holds the program used to start the machine?

c. can be changed by the user?

d. retains its contents, even when the power is turned off?

What is the function of

a. the microprocessor?

b. the buses?)

The two parts of the miéroprocessor are the EU and the BIU.
a. What is the function of the EU?

b. What is the function of the BIU?

In the microprocessor, what is the function of
a. theIP? ’
b. the ALU?

" a. What are the 1/O ports used for?

b. How are they different from memory locations?

What is the maximum length (in bytes) of an instruction for the
8086-based [BM PC?

Consider a machine language instruction that moves a copy of
the contents of register AX in the CPU to a memory word. What
happens during

a. the fetch cycle?

b. the execute cycle?

" Give

a. three advantages of high-level language programming.
b. the primary advanlaﬁ'ge vt assembly language programming.

'Representation of
Numpers and
Characters

Overview

You saw in Chapter 1 that computer circuits are capable of processing

"only binary information. In this chapter, we show how numbers can be

expressed in binary; this is called the binary number system. We also
introduce a very compact way of representing binary information called the
hexadeccimal number system.

Conversions between binary, decimal, and hexadecimal numbers are
covered in section 2.2. Section 2.3 treats addition and subtraction in these

number systems.
Section 2.4 shows how negative numbers are represented and what
effects the fixed physical size of a byte or word has on number representation.
We conclude the chapter by exploring how characters are encoded

and used by the computerse

2.1
Number Systems

Before we look at how numbers are represensed in Rinary. it is in-

structive to look at the familiar decimal system. It is an exainple of a positional

munber system; that is, cach digit in the number is associated with a power
of 10, according to its position in the number. For example, the decimal
number 3932 represents 3 thousands, 9 hundreds, 3 tens, and 2 ones. In
other words, ' -

3,932=3x10°+9x 107 +3x 10" +2x10°

19

20

2.1 Number Systems

MM O N @ > OO NOWVE WN - O

In a positional system, some number b is selected as the base and symbols
are assigned to numbers between 0 and b — 1. For example, in the decimal
system there are ten basic symbols (digits): 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The
base ten is represented as 10. -

Binary Number System

In the binary number system, the base is two and there are dnly two
digits, 0 and 1. For example, the binary string 11010 represents the number

Ix2te1x284+0x2241x2' +0x2%=26

The base two is represented in binary as 10.

Hexadecimal Number System

Numbers written in binary tend to be long and difficult to express.
For example, 16 bits are needed to represent the contents of a memory word
in an 8086-based computer. But decimal numbers are difficult to convert
into binary. When we write assembly language programs we tend to use both
binary, decimal, and a third number system called hexadecimmal, or hex for
short. The advantage of using hex numbers is that the conversion between
binary and hex is casy.

‘The hexadecimal (hex) system is a base sixteen system. The hex digits
are0,1,2,3,4,5,6,7,89,A,B,C, D, E, and F. The hex letters A through
¥ denote numbers ten to fifteen, respectively. After F comes the base sixteen,
represented in hex by 10.

Because sixteen is 2 to the power of 4, each hex digit corresponds
to a unique four-bit number, as shown in Table 2.1. This means that the
contents of a byte—eight bits—may be expressed neatly as two hex digits,
which makes hex numbers useful with byte-oriented computers.

Table 2.2 shows the relations among binary, decimal, and hexadec-
imal numbers. It is a good idea to take a few minutes and memcrize the first

Table 2.1 Hex Digits and Binary Equivalent
Hex Digits Binary
0000
0001
0010
oon
0100
010
0110
0111
1000
1001

1010
1011
1100
1101
1147
1111

Chapter 2 Representation of Numbers and Characters. 21 .

Table 2.2 Decimal, Binary, and Hexadecimal Numbers

Decimal - Binary ‘ Hexadecimal

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 . 5

6 110 6

7. 111 7

8 1000 8

[= 1001 9

10 4010 = A

11 1011 B
12 1100 Toc
13 1101 1))

o 14 . 1110 E
15 1111 F
16 10000 10

17 10001 11

18 10010 12

19 10011 13
20 . 10100 14

21 10101 15
122 10110 16
.23 10111 17
24 11000 18
25 11001 19
26 -11010 1A
27 11011 1B
.28 11100 1C
29 11101 1D
30 - 11110 1
31 11111 1F
32 100000 20
256 100000000 100
1024 400
32767 7FFF
32768 8000
65535 : . . FITF

1 Kilobyte (1 K8) = 1024 = 400h
64 Kilobytes (64 KB) = 65536 = 10000h
1 Megabyte (1 MB) = 1,048,576 = 100000h-

22 2.2 Conversion Between Number Systems

16 or so lines of the table, because you will often need to express smdll’
numbers in all three systems.

A problem in working with different number systems is the meaning
of the symbols used. For example, as you have scen, 10 means ten in the
decimal system, sixteen in hex, and two in binary. In this book, the following
convention is used whenever confusion may arise: hex numbers are followed
by the letter h; for example, 1A34h. Binary numbers are followed by the
letter b; for example, 101b. Decimal numbers are followed by the letter d;

for example, 79d.

2.2 :

Conversion Between in wo:-king with assembly language, it is often necessary to take a
Y

Number systems number expressed in one system and write it in a different system.

Converting Binary and Hex to Decimal

Consider the hex number 82AD. It can be written as

8A2Dh=8x 163+ Ax16%2+2x 16 +D x 16°
=8x163+10x162+2x 16"+ 13 x 16" =35373d

Similarly, the binary number 11101 may be written as
11101b=1x24+1x2>+1x2%2+0x2" + 1x2°=29d

This gives one way to convert a binary or hex number to decimal, but an
easier way is to use nested multiplication. For example,

8A2D=8x16"+Ax16%2+2x16' +D x 16°
=((Bx16+A)x16+2)x16+D
=((8x16+10)x 16+ 2)x 16+ 13
=35373d

This can be easily implemented with a calculator: Multiply the first hex «ligit
by 16, and add the second hex digit. Multiply that result by 16, and add the
third hex digit. Multiply the result by 16, add the next hex digit, and so on.

The same procedure converts binary to decimal. Just multiply cuch
result by 2 instead of 16. :

Example 2.1 .Convert 11101 to decimal.

Solution: ! 1 1 0 1
=1x2+1-3%x2+1-57x2+0—-14x2+1=29d

Example 2.2 Convert 2BD4h to decimal.

Solution: 2 B D 4
='2<<]6+ll —-43x16+13 5701 x16+4=11220

where we haye_uscq.the fact _that Bh = 11 and Dh = 13.

Chapter 2 Representation of Numbers and Characters 23

Converting Decimal to Bmary and Hex

Suppose we want to convert 11172 to hex The answer 2BA4h may -
be obtained as follows. First, dxvnde 11172 by 16 We get:a; quotxent of 698
and a remainder’ of 4. Thus

11172 698x 16+4

The remainder 4 is the unit’s digit in hex representatlon of 11172. Now
dxvnde 698 by 16. The quotxcnt is 43,’and the remainder is 10 Ah. Thus

- © 698= 43x16+Ah S

"The rermainder Ah is the sixteen’s dlg)t in the hex representation of 11172.
We just continue this process, each time dividing the most recent quotient
by 16, until we get a 0 quotient. The remainder each time is a digit in the
hex representation of 11172. Here are the calculations: "

11172 = 698 x 16 + 4
698 = 43x16+10(Ah)
43 = 2xl6+ll(Bh)

2= 0x16+2

Now just convert the remamders to hex and put them together in reverse
order to get 2BA4h.
This same process may be used to convert decimal to binary. The
_ only difference is that we repeatedly divide by 2.

Example 2.3 Convert 95 to binary.

Solution:) 95=47x2+ 1

47=23x2+1

23=11x2+1

11=5x2+1
S5=2x2+1
2=1x2+0
1=0><2-v_-1

Taking the remainders in reverse order, we get 95 = 1011111b.

Conversions Between Hex and Binary

. To convert a héx number to binary, we need only express each hex
digit in binary.

Example 2.4 Convert 2B3Ch to binary._.

Solution: . 2 B 3 C
’ =0010 1011 0011 1100
= 0010101100111100
To go from binary to hex, 1ust reverse this process; that is, group the bi-
nary digits in fours starting: from the nght Then convert each group to
a hex digit.\""’

Example 2.5 Convert 1110 0 0to hex

—

Solution: 1110101010= 111010 1010 = 3AAh.

24 2.3 Addition and Subtraction

2.3

Addition and Sometimes you will want to do binary or hex addition and subtrac-
Subtraction tion. Because these operations are done by rote in decimal, let’s review the
; process to see what is involved.
Addition
Consider the following decimal addition
2546
+1872:
4418

To get the unit’s digit in the sum, we just compute 6 + 2 = 8. To get the ten’s
digit, compute 4 + 7 = 11. We write down 1 and carry 1 to the hundred’s’
column. In that column we compute 5 + 8 + 1 = 14. We write down 4 and
carry 1 to the last column. In that column we compute 2 + 1 + 1 = 4 and
write it down, and the sum is complete.

A reason that decimal addition is easy for us is that we memorized
the addition table for small numbers a long time ago. Table 2.3A is an ad-
dition table for small hex numbers. To compute Bh + 9h, for example, just
intersect the row containing B and the column containing 9, and rcad 14h.

By using the addition table, hex addition may be done in cxactly
the same way as decimal addition. Suppose we want to con:pute the fol-
lowing hex sum:

Table 2.3A Hexadecimal Addition Table

0o 1 2 3 5 6 7 8 9 A B C D E F
0 0 1 2 3 4 5 6 —7 8 9 A B C D E F
1791 2 3 4 5 6 7 8 9 A B C D E F 10
212 3 4 5 6 7 8 9 A B C D E F 101
33 4 5 6 7 8 9 A B C D E 1 10 11 12
4 |4 S 6 7 8 9 A B C D E | 10 11 12 13
515 6 7 8 9 A B C D E F 10 11 12 13 14
6 16 7 8 9 A B C D E F 10 11 12 13 14 1S
717 8 9 A B C D E F 10 11 12 {3 14 15 16
8 {8 9 A B C€C D E F 10 11 12 13 14 15 16 17
919 A B C D E F 10 11 12 13 14 15 16 17 18
AJA B C D E F 10 11 12 13 14 15 16 17 18 i9
BB C D L F 10 11 12 13 14 15 16 17 18 19 1A
Cc |[C D E } 10 11 12 13 14 15 16 17 18 19 lA 1B
D |D E I 10 11 12 13 14 15.16 17 18 19 1A 1B 1C
E |[E F 10 11 12 13 14 5 16 17 18 19 1A 1B 1C iD
F |t 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D iE

Table 2.38 Binary Addition Table
N B P e e

0 0 1
1 1 10

Chapter 2 Representation of Numbers and Chsracters 25

\

1
5B3%h
+ 7AF4h

D62Dh

In the unit’s column, we compute $h + 4h = 13d = Dh. In the next column,
we get 3h + Fh = 12h. Write down 2 and carry 1 to the next column. In that
column, compute Bh + Ah + 1 = 16h. Write 6, end carry 1 to the last column.
There we compute Sh + 7h + 1 = Dh, and we are done.

Binary addition is done the same way as decimal and hex addition,
but is a good deal easier because the binary addition table is so small (Table

2.3B). To do the sum
) Wy

100101111 °
+ 110110

161100101

Compute 1 + 0 = 1 in the unit’s column. In the next column, add 1 + 1 =
10b. Write down 0 and carry 1 to the next column, where we get 1+ 1 + 1
= 11b. Writc down 1, carry 1 to the next column, and so on.

Subtraction
Let’s begin with the decimal subtraction
bb
9145
- 7283
1862 -
in the unit’s column, we compute S - 3 = 2. To do the ten’s. we first borrow 1
from the hundred’s column (to remember that we have done this, we may place
a “b” above the hundred’s column), and compute 14 - 8 = 6. In the hundred's
column, we must again borrow 1 from the next columin, and compute 11 - 2
- 1 (the previous borrow) = 8. In the last column, we get 9 -7 -1 = 1, -
Hex subtraction may be done the same way as decimal subtraction.
To compute the hex ditference
bb
D26F°
- BAY94
) 17DB
we start with Fh - 4h = Bh. To do the next (sixteen’s) column, we nust
borrow 1 from the thitd column, and compute
16h - 9%h =7
The ecasy way to figure this is to go to row 9 in Table 2.3A, and notice that
16 appears in column D. This means that 9h + Dh = 16h, so 16h - 9h = Dh.
In the third column, after borrowing, we must compute 12k - Ah -1 =11h
— Ah. In row A, 11 appears in column 7 so 11h - Ah = 7h. Finally in the last
column, we have Ch - Bh = 1.
-+ Now let us look at binary subtraction, for.example,

bb
1001
-0111

0010
The unit’'s column is easy, 1 - 1 = 0. We must borrow to do the two's column,
getting 10 -1 = 1. To do the four’s column, we must again borrow, computirg
10 - 1 - 1 (since we borrowed from this column) = 0. Finally in (-e Jast
column, we have 0 -0 = 0.

26 2.4 How Integers Are Represented in the Computer

2.4

How Integers Are
Represented in the
Computer

The hardware of a computer necessarily restricts the size of numbers
that can be stored in a register or memory location. In this section, we will
sec how intcgers can be stored in an 8-bit byte or a 16-bit word. In Chapter
18 we talk about how real numbers can be stored.

In the following, we’ll need to refer to two particular bits in a byte
or word: the most significant bit, or msb, is the leftmost bit. In a word,
the msb is bit 15; in a byte, it is bit 7. Similarly, the lcast significant bit,
or Isb, is the rightmost bit; that is, bit O.

2.8
Unsingned Integers

An unsigned integer is an integer that represents a magnitude, so
it is never negative. Uns'{gned integers are appropriate for representing quan-
tities that can never be negative, such as addresses of memory locations,
counters, and ASCII character codes (see later). Because unsigned integers
are by definition nonnegative, none of the bits are needed to represent the
sign, and so all 8 bits in a byte, or 16 bits in a word, arc available to represent
the number.

The largest unsigned integer that can be stored in a byteis 11111111
= FFh = 255. This is not a very big number, so we usually store integers in
words. The biggest unsigned integer a 16-bit word can hold is
1111111111111111 = } FFFh = 65535. This is big enough for most purposes.
If not, two or more words may be used.

Note that if the least significant bit of an integer is 1, the number
is odd, and it’s even if the Isb is 0.

2.4.2
Signed Integers

A signed integer can be positive or negative. The most significant
it is reserved for the sign: 1 means negative and 0 means positive. Negative
integers are stored in the computer in a special way known as two’s com-
plemcent. To explain it, we (irst define one’s complement, as follows.

One’s Complement

. The one’s complement of an integer is obtained by complementing
each bit; that is, replace cach 0 by a 1 and each 1 by a 0. In the following,
we assume numbers are 16 bits.

Example 2.6 Find the one’s complement of 5 = 0000000000000101.

Solution: S = 00000000000(00101
One’s complementof 5=1111111111111010

Note that if we add 5 and its one’s complement, we get
1111111131111111.

Chapter 2 Representation of Numbers and Characters 27

Two's Complement

To get the two's complement of an integer, just add 1 to its one’s
complement.

Example 2.7 Find the two’s complement of S.

Sblution: From above,

onc’s complement of 5 = 1111111111111010
+ L

two’s complement of 5= 1111111111111011 = FFTBh

Now look what happens when we add S and its two's complement:

5 = 0000000000000101
two’s complement of 5= 1111111111111011

10000000000VB000V

We end up with a 17-bit number. Because a coniputer word circuit can
only hold 16 bits, the 1 carvied out from the most significant bit is lost,
and the 16-bit result is 0. As § and 1ts two's coniplement add up to 0, the
two's complement of 5 must be a correct representation of -35.

It is casy to sce why the two's complement ot any integer N must
represent -N: Adding N and its one’s complement gives 16 ones; adding 1
to this produces 16 zevos with a 1 carried out and lost. Jhe result stored s
always 000000000000000X). - ’

The folloviing example shows what happens when a number is coms-
plemented two tines.,

Example 2.8 Find the two's complement of the two's complement of S.

Solution: We would guess that after complementing 5 two times, the re-
sult should be 5. To verify this, from above,

two'’s complement of 5=1111111111111011 ~
one’s complement of 1111111111111011 = 0000000000000100

+ 1
two’s complement of 1111111111111011 = 0000000000000101 = §

‘ .
Example 2.9 Show how the decimal integer ~97 would be represented
(@) in 8 Lits, and (b) in 16 bits. Express the answers in hex.

Solution:. A decimal-to-hex conversion using repeated division by 16 yields

97 =6x16+1

6=0x16+6
Thus 97 = 61h. To rc[);csc.'nl =97, we need to express 611 in binory and
take the two's complement., :

28 2.4 How integers Are Represented in the Computer

a. In 8 bits, we get

61h =0110 0001
one’s complement = 1001 1110
+1

two's complement = 1001 1111 = 9Fh

b. In 16 bits, we get

. 1

61h = 0000 0000 0110 0001 -

one’s complement = 1111 1111 1001 111Q-~
+1

1111 1111 1001 111‘1=Fl:9}-‘h

Subtraction as Two's Complement Addition

The advantage ol two's complement representation of negative in-

" tegers in the computicer is that subtraction can be done by bit complemen-

tation and addition, and circuits that add and complement bits are easy to
design. ’

Example 2.10 Supposc AX contains SABCh and BX contains 21FCh.
Find the difference of AX minus BX by using complementation and addi-
tion.

Solution: AN contairis SABCh = 0101 1010 1011 1100
BX contains 21FCh = 00100001 1111 1100

SABCh = 010110101011 1100

+ one’s complement of 21FCh = 1101 1116 0000 GO11

+1

Diffcience = 1031 1069 1100 0000 = 38C0h

|

A one is carried out of the most dynatioant Lit and is lost. The answer
stored, 38COR, is correct, as may be verified by hex subtraction.

2.4.3

Decimal Interpretation In the last section, we saw how signed and unsigned decimal integers
may be represented in the computer. The reverse problemn is to interpret the
contents ot a byte or word as a signed or unsigned decimal integer.

e Unsivned decimal interpretation: Just do a binary-to-decimal
conversion. It's usually easier to convert binary to hex first,
and then convert hex to decimal.

o Sigued decimal interpretation: 1f the most significant bit is 0,
the number is positive, and the signed decimal is the same as
the unsigned decimal. If the msb is 1, the number is nega-
tive, so call it -N. fo find N, just take the twos’ complement
and then convert to decimal as before.

Example 2.11 Suppose AX contains FEOCh. Give the unsigried and
signed decimal interpretations.

Chapter 2 Represenrarioryéf Numbers and Characters 29

Table 2.4A Signed and Unsighed Decimal Interpretations of 16-Bit
Register/Memory Contents

Hex Ursigned decimal Signed decimal
0000 0 0
0001 1 1
0002 2 2
0009 9 ' 9
000A 10) 10
7FFE 32766 32766
TEFF : 32767 32767
8000 32768 -32768
8001 ’ 32769 -32767
FFFE 65534 - -2
FEFF 65535 -1

\

Solution: Conversion of FEOCh to decimal yields 63036, which is the
unsigned decimal interpretation.

For the signed interpre'tatiori, FEOCh = 1111111000001100. Since the sign
bit is 1, this is a negative number, call it -N. To find N, get the two’s com-
plement.
FEOCh =1111 11100000 1100
one’s complement = 0000 0001 1111 0011
+1

N = 0000 0001 1111 0100 = 01F4h = 500

Thus, AX contains -500.
Tables 2.4A and 2.4B give 16-bit word and 8-bit byte hex values and
their signed and unsigned decimal interpretations. Note the following:

1. Because the most significant bit of a positive signed integer is O,
the leading hex digit of a positive signed integer is 0 = 7; integers
beginning with 8-Fh have 1 in the sign bit, so they are negative.

2. The largest 16-bit positive signed integer is 7FFFh = 32767; the
smallest negative integer is 8000h = -32768. For a byte, the larg-

. est positive integer is 7Fh = 127 and the smallest is 80h = -128.

" . 3..Thefollowing relationship holds between the unsigned and
signed decimal interpretations of the contents of a 16-bit word:

30 2.5 Character Representation

Table 2.4B Signed and Unsigned Decimal Interpretations of a Byte

Hex Unsigned decimal Signed decimal
00 0 : 0
o1 T 1 1
02 2 2
09 9 9
0A 10 10
7t 126 126
7F 127 : 127
80 128 -128 7
81 129 -127
FE 254 -2
FF 255 -1

For 0000h-7FFFh, signed decimal = unsigned decimal.
For 8000h-FFFFh, signed decimal = unsigned decimal - 65536.

There are similar relations for the contents of an cight-bit byw:
For 00h-7Fh, signed decimal = unsigned decimal.

For 80h-FFh, signed decimal = unsigned decimal - 256.

Example 2.12 Use observation 3, from the above, to rework example
2.11.

Solution: We saw that the unsigned decimal interpretation of FEOCh is
65036. Because the leading hex digit is Fh, the content is negative in a
signed sense. To interpret it, just subtract 65536 from the unsigned deci-
mal. Thus

signed decimal interpretation = 65036 - 65536 = -500

2.5 ' .

Character ~ - . ASCli Code
-Representation : - e

. . Not all data processed by the computer are treated as numbers. e g
devices such as the video monitor and printer are character oriented, and
programs such as word processors deal with characters exclusively. Like all

Chapter 2 Representation of Numbers and Characters 31

data, characters must be coded in binary in order to be processed by the
computer. The most popular encoding scheme for characters is ASCII
(American Standard Code for Information Interchange) code.
Originally used in communications by teletype, ASCII code is used by all
personal computers today.

The ASCII codc system uses seven bits to code each character, so
there are a total of 2’ = 128 ASCII codes. Table 2.5 gives the ASCH codes and
the characters associated with them.

Notice that only 95 ASCII codes, from 32 to 126, are considered to
be printable. The codes 0 to 31 and also 127 were used for communication
control.purposes and do not produce printable characters. Most microcom-
puters use only the printable characters and a few control characters such
as LF, CR, BS, and Bell.

Because each ASCII character is coded by only seven bits, the code
of a single character fits into a byte, with the most significant bit set to zero.
The printable characters can be displayed on the video monitor or printed
by the printer, while the control characters are used to control the operations
of these devices. For example, to display the character A on the screen, a
program sends the ASCII code 41h to the screen; and to move the cursor
" back to the beginning of the line, a program sends the ASCII code ODh,
which is the CR character, to the screen.

A computer may assign special display characters to some of the
non-printed ASCII codes. As you will see later, the screen controller for the
IBM PC can actually display an extended set of 256 characters. Appendix A
shows the 256 display characters of the IBM PC.

Example 2. ;’-! ~w j1ow the character string “RG 22" is stored in mem-
ory, starting .. address O.

Solution: From Table 2.5, we have .

Character - ASCll Code (hex) ASCll Code (binary)
R h 52 0101 0010
G . . 47 0100 0111
space ’ 20 . 0010 0000
2 S 32 0011 0010

z . 7A ’ 0111 1010
So memory would look like this: | .

Address Contents

0 01010010
1 22101000111
2 . 00100000
3 ‘do11b010
4 01111010

The Keyboard

It's reasonable to guess that the keyboard identifies a key by gener-
ating an ASCIl code when the key is presscd. This was true for a class of
keyboards known as ASCIH keyboards used by some early microcomputers.

32

2.5 Character Representation

Table 2.5 ASCIl Code

Dec Hex Char

NV E WN - O

R Ve
[V SR VY I NI e |

—

WNRNNKNNKNNRNNN 2 o o
O WO NGOWVDHWN-= O WO

N

00
01

02

03
04
CS
06
07

08
09
0A
0B
0oC
00
Ot

o]

10
11

12
13
14
15
16
17
18
19
1A
18
1C
1D
1€

1F

<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>
<CC>

<CC>,

<CC>
<CC>

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50 °
51
52
53
54
55
56
57
58
59
60
61
62
63

20
21

22

23
24

25

26
27

28
29
2A
28
2C
2D
2E

2F

30
3N

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3t

3F .

SP
!

WO NN D WN - O~

~ v

<CC> denotes a control character

SP = blank space

Special Control Characters

Dec
7

8

9
10
12
13

Hex
07
08
[01°]
0A
ocC
ob

64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92
93
94
95

Char
BEL
8s
HT
LF

FF
CR

40
a4
42
43
44
a5
46
a7

48

49
aA
4B
ac
4D
4E

af

50
51

52
53
54
55
56
57
58
59
5A
58
5¢C
5D
SE
SF

@

> S TNXKXgEg<CAVMDOOVOZTIC AT TIOTMON® D

i

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
m
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Meaning

bell

backspace

60
61
62
63
64
65
66
67
68
69
6A
68
6C
60
6E
6F
70
ra
72
73
74
7%
76
77
78
79
7A
78
7C
70
7€
7F

Dec Hex Char Dec Hex Char Dec Hex Char

WK MO A nNn T o

-~ 0 v 0 3 3 T x®—

— NN X g < con

<CC>

horizontal tab
line feed

form feed

carriage return

Chapter 2 Representation of Numbers and Characters a3

However, modern keyboards have many control and function keys in addi-

,tion to ASCII character keys, so other encoding schemes are used. For the
IBM PC, each key is assigned a unique number called a scan code; when a
key is pressed, the keyboard sends the key’s scan code to the computer. Scan
codes are discussed in-Chapter 12.

SUMMARY - . L

Numbers are represented in different ways, according to the basic

. symbols used. The binary system uses two symbols, 0 and 1. The

deciinal system uses 0-9. The hexadecimal system uses 0-9, A-F.

Binary and hex numbers can be converted to decimal by a pro-
cess of nested muitiplication.

A hex number can be converted to decimal by a process of re-
peated division by 16; simllarly, a binary number can be con-
verted to decimal by a process of repeated division by 2.

Hex numbers can be converted to binary by converting each hex
digit to binary; binary numbers are converted to hex by grouping
the bits in fours, starting from the right, and converting cach
group to a hex digit. -

The process of adding and subtracting hex and binary numbers is

. the same as for decimal numbers, and can be done with the help

of the appropriate addition table.

Negative numbers are stored in two’s complement form. To get
the two’s complement of a number, complement cach bit and
add 1 to the result.

If Aand B arc,stpj,eg,mlegezs Ahc.p:occssor computes A - B by
adding the two's complement of B to A.

The range of unsigned integers that can be stored in a byte is 0-
255; in a 16-bit word, if is 0-65535.

For signed numbers, the most significant bit is the sign bit; 0
means positive and 1 means negative. The range of signed num-
bers that can be stored in a byte is 128 to 127; in a word, it is
-32768 10 32767.

The unsigned decimal interpretation of a word is obtained by con-
verting the binary value to decimal. If the sign bit is 0, this is

also the signed decimal interpretation. If the sign bit is 1, the
signed decimal interpretation may be obtained by subtracting
65536 from the unsigned decimal interpretation.

The standard cncoding scheme f{or characters is the ASCII code.

A character requires scven bits to code, so it can be stored in a

o bytc

The 1BM screen controller can gencrate a character for cach of the
256 possible numbers that can be stored in a byte.

34

Glossary

Glossary

ASCIT (American Standard < The encoding scheme for characters used

Code for Infermation .-
Interchangc).codes: .

binary number system

hexadecimal number
system: .

least significant bi¢, Isb .

most significant bit, msb. .

one’s complement of a .
binary number -

scan code

signed h'\tcgcx. .
two's complementef a ..
binary number

unsigned integer

on all.personal computers

r

Base two system in which the digits are 0
and'1 .

Base sixteen system in which the digits.
are0,1,2,3,4,5,6,7,89,A,B,C/D/

E, and F

The rightmost bit in a word or byte; that. -
is, bit 0

The leftmost bit in a word or byte; that -

is, bit 15 in a word or bit 7 in a byte -
Obtained by replacing each 0 bit by 1

and each 1 bit by O

A number-used to identify a key on the..
keyboard: ‘
An integer that.can be positive or negative
Obtained by adding 1 to the one’s com- -
plement -

An integer representing a magnitude; that .
is, always pasitive

Exercises - -

In. many -applications, it saves time to memorize the conversions .
among small binary, decimal, and -hex numbers. Without refer. ‘-
ring to Table 2.2, fill.in the blanks in.the following table:-

Binary .
teel
1C10
b
10}
1110
0

Decimal. . Hex >
9 B
L &
u D

12 &_
§) L
4 8

2. Convert the following binary.and hex numbers to decimal:.

1110 -
b. 100101011101 °
c. 46Ah
d.. FAE2Ch .

627 to binary
921 to hex
d. 76120 to hex

C
a.. 97-to.binary.
b.
C

onvert the following decimal numbers: -

4. Convert the following numbers:

Chapter 2 Representation of Numbers and Characters . 35

4. 1001011 in hex
b, 1001010110101110 to hex
¢ A2Ch lu.bi.n_u'ry\ ‘
d. B34Dh to binary
5. TPerform the following additions:
| a.” 100101b + 10111b
~b. 100111101b + 10001111001b
c. -B23CDK + 17912h
d. FEFFEh + FBCADQ
6. Perform the following sublractions:
‘a. 11011b - 10110b
b. 10000101b - 111011b -
¢. SFCi12h - 3ABD1h
d. FOO1th - 1FF3Fh
7. Give the 16-bit representation of-cach of the following decimal in-
tegers. Write the answer in hex.

a. 234 -
.b. -16

¢. 31634

d. -32210

8. Do the following binary and hex subtractions by two's comple-
ment addition,

a. 10110100 - 10010111 .
b. 10001011 - 11110111-
¢. FEOFh - 1ZABh
d. : 1ABCh -[B3EAh
9. Give the unsigned and signed decimal interpretations of each of

the following 16-bit or 8-bit numbers. »
a. 7FFEh
b, 8543h
¢. FEh
d. 7Fh
10. Show how the decimal integer -120 would be represented
a. in 16 bits. '
b. in 8 bits.

11. For each of the following decimal numbers, tell whether it could
be stored (a) as a 16-bit number (b) as an 8-bit number.

a. 32767
b. —10000
C. 65536
d. 2574

Q.J—IZB

12, Yor each ot the following 16-bit signed numbers, tell whether it is
positive or negative.

a. J1010010010010100b
b. 78E3h ' -

36

Exercises

13.

14.

15.

16.

17.

c¢. CB33h
d. 807Fh

e. 9AC4h

If the character string “$12.75” is being stored in memory start-
ing at address 0, give the hex contents of bytes 0-5.

Translate the following secret message, which has been encoded
in ASCII as 41 74 74 61 63 6B 20 61 74 20 44 61 77 6E.
Suppose that a byte contains the ASCII code of an uppercate let-
ter. What hex number should be added to it to convert it to
lower case?

Suppose that a byte contains the ASCII code of a decimal digit;
that is, “0”. .. “9.” What hex number should be subtracted from
the byte to convert it to the numerical form of the characters? -
It is not really necessary to refer to the hex addition table to do
addition and subtraction of hex digits. To compute Eh + Ah, for
example, first copy the hex digits:

0123456789ABCDEFTF

Now starting at Eh, move to the right Ah = 10 places. When you
go off the right end of the line, continue on from the left end
and attach a 1 to cach number you pass:

10 11 12 13 14 15 16 17 189 ABCDEF
STOP ~ START #

You get Eh + Ah = 18h. Subtraction can be done similatly. For ex-
ample, to compute 15h — Ch, start at 15h and move left Ch = 12
places. When you go off the left end, continue on at the right:

10 11 12 13 14 1§ 6 7 8 9 AB CDTEF
A START ~ STOP

You get 15h - Ch = 9h.
Rework exercises S(c) and 6(c) by this method.

Organization-
of the IBM Personal
Computers

I.
vaerview

Chapter 1 described the organization of a typical microcomputer
system. This chapter takes a closer look at the IBM personal computers. These
machines are based on the Intel 8086 family of microprocessors.

" After a brief survey of the 8086 family in section 3.1, section 3.2
concentrates on the architecture of the 8086. We introduce the registers and
mention some of their special functions. In section 3.2.3, the important idea
of segmented memory is discussed.

In section 3.3, we look at the overall structure of the IBM PC; the
meimory organization, 1/O ports, and the DOS and BIOS routines.

3.1

The Intel 8086
Family of
Microprocessors

r

The 1BM personal computer family consists of the IBM PC, PC XT,
PC AT, PS/1, and PS/2 models. They are all based on the Intel 8086 family
of microprocessors, which includes the 8086, 8088, 80186, 80188, 80286,
80386, 80386SX, 80486, and 80486SX. The 8088 is used in the PC and PC
XT; the 80286 is uséd in the PC AT and PS/1. The 80186 is used in some
PC-compatible lap-top modcls. The PS/2 models use either the 8086, 80286,
80386, or 80486.) B -

37

38

3.1 The Intel 8086 Family of Microprocessors

The 8086 and 8088 Microprocessors

Intel introduced the 8086 in 1978 as its first 16-bit microprocesso
(a 16-bit processor can opcrate on 16 bils of data at a time). The 8088 was
introduced in 1979. Internally, the 8088 is essentially the same as the 8086.
Externally, the 8086 has a 16-bit data bus, while the 8088 has an &bit.data
bus. The 8086 also has a faster clock rate,;and thus has belter performance.
IBM chose the 8088 over the 8086 for the.original PC .becausc it was less
expensive to build a computer around the 8088.
**The 8086 and 8088 have theisame iastruction set, ‘and it-forms the
basic-set-of thstructions fot the' other microprocessors in the family.

The 80186 and 80188 Micrapracessors .

The 80186 ard 80188 are enhanced versions of the 8086 and 8088,
respectively. Their advantage is that they incorporate all the functions of the
8086 and 8088 microprocessors plus those of some support chips. They can
also execute somie new instructions called the extended instruction sct. How-
ever, these processors offered no significant advantage over the 8086 and
8088 and were soon cvershadowed by the development of the 80286.

The 80286 Microprocessor

The 80286, introduced in 1982, is also a 16-bit microprocessor. How-
ever, it can operate faster than the 8086 (12.5 MHz versus 10 MHz) and offers
the following important advances over its predecessors:

1. Two mwdes of operation. The 80286 can operate in either. real ad-
dress mode or protected virtual address mode. In real ad-
dress mode, the 80286 behaves like the 8086, and programs for
the 8086 can he¢ executed in this mode without modification. In
protected virtual address mode, also called protected mode, the
80286 supports multitasking, which is the ability to execute
several programs (tasks) at the same time, and memory protec-

. tion, which is the ability to protect the memory used by one pro-
gram from the actions of another program.
© 2. More addressable memory. The 80286 in protected mode can ad-
dress 16 megabytes of physical memory (as opposed to 1 mega-
byte for the 8086 and 8088).

3. . Virtual emory in protected mode. This means that the 80286 can
treat external storage (that is, a disk) as it it were physical mem-
ory, and theretore exccute programs that are too large ‘to be eon-
tained in physical memory; such programs can be up-to 1
gigabyte (2% bytes).

The 80386 and 803865X Microprocessors

Intel introduced its:ﬁvr‘st 32-bit microprocessor, the 80386 (or 386},
in 1985. 1t is much faster than the 80286 because it has a 32-bit data path,
high clock rate (up to 33 Mtiz), and the ability to exccute instructions in
tewer clock cycles than the 80286,

Like the 80286, tie 386 can operate in cither real or protected mode.
in real mode, it behaves like an 8086. In protected mode, it can emulate the
80286. it also has a virtual 8086 mode designed to run mulitiple 8086 app71
cations under memory protection. The 386, in protected mode, can address
4 gigabytes of physical memory, and 64 terabytes @ 16 bytes) of virtual memory.

Chapter 3 Organization of the IBM Personal Computers ~39

The 3865X has cssenbally the same internal structure as the 386,
but it has only a 16-bit data bus.

The 80486 and 80486SX Microprocessors

Introduced in 1989, the 80486 (or 486), is another 32-bit micropro-
cessor. It is the fastest and most powerful processor in the family. It incor-
porates the functions of the 386 together with those of ather support chips,
including the 80387 numeric processor, which performs floating-point num-
ber operations, and an 8-KIl cache memory that serves as a fast memory arca
to bufter data coming from the slawer memory unit. With its numeiric pro-
cessor, cache memory, and more advanced design, the 486 is three times
faster than a 386 running at the:same clock speed. The 4868X is similar to

the 486 but without the tloating-point processor.

3.2 -
Organization of.the
8086/8088

In the rest of this chapter we'll concentrate on the organization of
the 8086 and 8088. These processors have the simplest structure, and most
of the instructions we will study are 8086/8088 instructions. They also pro-
vide insight to the organization of the more advanced processors, discussed

Because the 8086 and 8088 have essentially the same internal struc-
ture, in the following, the name “8086” applies to both 8086 and 8088.

- As noted in Chapter 1, information inside the microprocessor is
stored in registers. The registers are classified according to the functions they
perform. In general, data registers hold data for an operation, address registers
hoid the address of an inStTUCioN or data,
CUTTeRT STIVUS OF tIT Processor.

The 8086 has four general data registers; the address registers are
divided into segment, pointer, and index registers; and lmm
called the FLAGS Tegister. In total, there are fourteen 16-bit registers, which
we now briefly describe. See Figure 3.1. Note: You don’t need to memorize

the special functions of these registers at this time. They will become familiar
with use. :

a- smTs egisier keeps the

Microprocessors
in Chapter 20.
3.2.1
Registers
3.2.2

Data Registers: AX, BX,
CX;.DX

These four registers are available to the programmer tor general data
manipulation. Even though the processor can operate on data stored in mem-
ory, the same instruction is faster (requires fewer clock cycles) if the data are
stored in registers. This is why modern processors tend to have a lot of
registers. :

‘The high and low bytes of the data registers can be accessed sepa-
rately. The high byte of AX is called AH, and the low byte is AL. Similarly,
the high and low bytes of BX, €X, and DZ(are BH and BL, CH and CL, DH

. and,DL, respectively. This arrangement gives us more régisters to usé when

dealing with byte-size data.
These four registers, in addition to being general-purpose registers,

“also perform special functions such as the following.

40 3.2 Organization of the 8086/8088 Microprocessors

Figure 3.1 8086 Registers
Data Registers
AH AL

BH BL =
BX

“H - cL

DH DL
DX

Segment Registers

cs

DS

ss

ES

Pointer and Index Registers

St

[s]]

SP

BP

FLAGS Register

'AX (Accumulator Register)

AX is the preferred register to use in arithmetic, logic, and ¢
transfer instructions because its use generates the shortest michine co

Chapter 3 Organization of the IBM Personal Computers 41

In multiplication and division operations, one of the numbers involved must
be in AX cr AL. Input and output operations also require the use of AL and AX.

BX (Base Register)

BX also serves as an address register; an example is a table look-up
. instruction called XLAT (translate).

' CX (Count Register)

. ¢ Program loop constructions are facilitated by the use of CX, which
serves as a loop counter. Another examiple of using CX as counter is REP
(repeat), which controls a spécial class of instructions called string operations.
CL is used as a count in instructions that shift and rotate bits.

DX (Data Register)
DX is used in multiplication am_f division. It is also used in /O

operations
3.23 »
Segment Registers: Address registers store addresses of instructions and data in memory.
CS. DS, SS, ES These values are used by the processor to access memory locations. We begin

with the memory organization~f

Chapter 1 explained that memory is a collection of bytes. Fach mem-
ory byte has an address, starting with 0. The 8086 processor assigns a 20-bit
physical address to its memory locations. Thus it is possible to address
220" 1,048,576 bytes (one megabyte) of memory. The first five bytes in

memory have the followir?gl fx'd'dlrss'sle'si‘ WEotrr s

‘ 0
00000000000000000001
00000000000000000010
0000000000000000001 1
000006000000000000100

Because addresses are so cumbersome to write in binary, we usually express
them as five hex digits, thus

00000
00001 -
00002

00009 *-
0000A -
00008

and so on. The highest address is FFFFFhX -

) In order to explain the function of the segment registers, we first
necd to introduce the idea of memory segments, which is a direct conse-
quence of using a 20-bit address in a 16-bit processor. The addresses are too

4

-

3.2 Organization of the 8086/8088 Microprocessors

.. big to fit in a-16-bit register:or memory word. The 8086.gets around this
- problem by partitioning-its' memory-into segments.

* Memory Segment

- Axmemory segment is a block of 2°7 (or 64 K) cousecutive memory
bytes. Each segment is.identificd by a segment numbeer, starting with. 0.
A segment number is 16 bits, so the highest segment number is FFFfh.
T withina segment, a memory location is specified by g.ving-an ‘off-
sct. This is the number of bytes from the beginning of the segment. With
a 64-KB segment, the: offsct can be given as a 16-bit number The first bytc
in a segment has offset 0. The last offset in a segment is FFFFh.

216

" Segment:Offset Address

A memory location may be specified by: providing a segment number
and an offset, written in the formn segmentoffset; this is known as 2 logical
addrcss. For example, A4FB:4872h means offset 4872h within segment A4FBh.
To obtain a 20-bit physical address, the 8086 microprocessor first shifts the
segment address 4 bits to the left (this is equivalent to multiplying by 10h), and
then adds the offset. Thus the physical address for A4FB:4872 is

A4FBOh
+4872h

A9822h (20-bit physical address)

Location of Segments

It is instructive to sce the layout of the segments in memory. Segment
0 starts at address 0000:0000 = 00000h and ends at 0000:FFFF = OFFFFh.
Segment 1 starts at address 0001:0000 = 00010h af¥ ends at 0001:FFFF =
1000Fh. As we can see, therc'is a lot of overlapping between segments. Figure
3.2 shows the locations of the first three memory segments. The segments
start every 10h = 16 bytes and the starting address of a segment always ends
with a hex digit 0. We call 16 bytes a paragraph. We call an'address that
is divisible by 16 (ends with a hex digit 0) a.paragraph baundary.
. Because segments may overlap, the segment:offset form of an address
is not unique, as the following example shows.

" Example 3.1 For the memory location whose physical address is speci-

fied by 1256Ah, give the address in segment:offset form for segments
1256h and 1240h.

Solution: Let X be the offset in segment 1256h and Y the offset in seg-
ment 1240h. We have
1256Al = 12560h + X and 1256Ah = 12400h + Y

and so
= 1256Ah - 12560h = .‘\il and Y= 1256Ah - 12400h = 16Ah

thus-

1256Ah = 1256:000A = 1240:016A

Chapter 3 Organization' of thé 18M:Personal Computers

iz

Figure 3.2 «Location of
Memory Segments

.

.f:'

el e e 1001E

. Address

b=~ 410021
. - 10020
Segment 2 ends —— 1001F

' ...
' 10010
Segment 1 ends - ——>» 1000F

1000E

! 10000
Segment 0 ends ———» OFFFF
OFFFE

00021
Segment 2 begins — 00020
0001F
00011
Segment 1 begins-——— 00010°
0000F
00003
00002

- 00001
Segment 0 begins —— 00000

11010101
01001001

© 11110011

10011100

. 01111000

11101011
10011101

01010001
1111110
10011111

01000000
01101010
10110101

01011001
ARRARRRR]

© 10001110

10101011 .
00000010 -

10101010
00111000

address and the offsct are given.

43

1t is also possible to calcuiate the segment number when the physical

segment does it have offset BFD2h?

Solution: “We'know that

physical address = segment x 10h + offset

Thus

©in this example

So the segment must be 7500h.

o

physical address = 80FD2h
Yo~ offset 2

sepment x 10h = physical address - offsct -

scgment x 10h = ,75000h

BrD2h

. Example 3.2 A miemory location has physical address BOFD2h. In what

44 3.2 Organization of the 8086/8088 Microprocessors

figure 3.3 Segment Registers

8086 Processor Address Mamory
s 0F8Ah + 0F8A:0000 |— Code segment &gins —
DS 0F89h -+ O0F89:0000 |— Data segment begins ~—
131 OF6Sh +» 0F69:0000 I— Stack segment begins -—)
€S .

Program Segments

Now let us talk ahout the registers CS, 1S, 88, and ES. A typical
machine language prograni consists of instructions (code) and data. There
is also a data structure called the stack used by the processor to implement
procedure calls. The program’s code, data, and stack arc loaded into different
memory segnents, we call them the code segment, data scgment, and
stack segmcent.

To keep track of the various program segments, the 8086 is équipped
with four segment registers to hold scgment numbes. The CS, DS, and SS
registers contamn the cade, data, and stack segment numbers, respectively. If
a program needs to access a second data segment, it can use the ES (extra
segment) register.

A program segment nced not occupy the entire 64 kilobytes in a
memory scgment. The overlapping nature of the memory segments permits
program segments that arc less than 64 KB to be placed close together=Figure
3.3 shows a typical layout of the program segments in memory (the segment
numbers and the relative placement of the program scgments shown are
arbitrary). -

At any given time, only those memory locations addressed by the
four segment registers are accessible; that is, only four memory segn‘iehts are
active. However, the contents of a segment register can be modified by a
program to address different segments.

3.24
Pointer and Index
Registers: SP, BF, Si, DI

The registers SP, BP, SI, and DI normally point to (contain the offset
addresses of) memory locations. Unlike segment registers, the pointer and
index registers can be used in arithmetic and other operations.

SP (stack Pointer)

; The SP (stack pointer) register is used in conjunction with SS for access-
ing the stack segment. Opérations of the stack are covered in Chapter 8.

Al

Chapter 3 Organization of the IBM Personal Computers 45

BP (Base Pointer)
I’hc BP (base pointer) register is used primarily to access data on the

“stack. However, unlike SP, we can also use BP to access data in the other
. segments.

SI (Source Index)

The S! (source mdex) register is used to point tomemory locahons
in the data segment addressed by DS. By incrementing the contents of SI,
we can easily access consecutive memory locations. '

* N . e .

DI (Destination Index)

The DI (destmation index) regnster performs the same functions as
SI. There is a class of instructions, called string operations, that use DI to access
memory locations addressed by ES.

3.25
Instruction Pointer: IP

The memory registers ‘covered so far are for data access. To access
instructions, the 8086 uses the registers CS and IP. The CS register contains

- the segment number of the next instruction, and the IP contains the offset.

IP is updated each time an instruction is executed so that it will point to
the next instruction. Unlike the other registers, the IP cannot be directly
manipulated by an instruction; that is, an instruction may not contain 11’
as its operand. ‘

3.2.6 -
FLAGS Register

The purpo;c of the FLAGS regiSlcr is to indicate the status of the

" _microprocessor. It does this by the setting of individual bits called flags.

There are two kinds of flags: status flags and control flags. The status
flags reflect the result of an instruction exccuted by the processor. For exam-
ple, when a subtraction operation results in a 0, the ZF (zero flag) is set to
1 (true).’A subsequent instruction can examine the ZF and branch to some
code that handics a zero resuit. ’

" The control flags enable or disable certain operations of the proces-
sor; for example, if the IF (interrupt flag) is cleared (set to 0), inputs from
the keyboard are ignored by the processor. The status flags are covered in
Chapter S, and the control flags are discussed in Chapters 11 and 15.

3.3
Organization of
the PC

A computer system is made up of both hardware and software. It is
the software that controls the hardware operations. So, to fully understand
the operanons of the' computcr, you also’ study the software that controls
the computdr.

46 3.3 -Organization of the PC

3.3.1:
THe Operating Systensn

The most impartant piece of software for a computefr is the oper-
ating system. The purpose of the operating system is to coordinate the
operations of all the devices that make.up the computer system. Some of
the operating system functions are

1. reading and executing the commands typed by the user
2. performing I/O operations
3. generating error messages- -
4. managing memory and other resources _'

At present, the most popular operating system for the IBM PC is the
disk opcrating system (DOS), also referred to as PC DOS or MS DOS.
DOS was designed tor the 8086/8088-based computers. Because of this, it
can manage only 1 megabyte of memory and it does not support multitask-
ing. However, it can be used on 80286, 80386, and 80486-based machines
when they run in rcal address mode.

One of the many functions performed by DOS is reading and writing
information on a disk. Programs and other information stored on a disk arc
organized into files. Fach file has a file name, which is made up of one
to cight characters followed by an optional file.cxtension of a period fol-
lowed by one to three characters. The extension is commonly used to identify
the type of file. For example, COMMAND.COM has a file name COMMAND
and an extension .COM.

There are several versions of DOS, with caciy new version having
mote capabilities. Most commercial programs require the use of version 2.1
or later. DOS is not just one program;.it consists of a number of service
routines. The user requests a service by typing a command. The latest version,
DOS 5.0, also supports a graphical user interface (gui), allowing the use
of a mouse.

The DOS routine that services user commands is called COM: .
MAND.COM..It is responsible for generating the DOS prompt-—that is, C>-—
and reading uscr commands. There are two types of user-commands;.
internal and external...

" Internal commands are performed by DOS routines that have been -
loaded into memory, external commands may refer to DOS routines that
have not been loaded or to application programs. In normal operations,
many DOS routines are not loaded into memory so as to save memory space.

Because DOS routines reside on disk, a progrum must be operating
when the computer is powered up to read the disk. In Chapter 1 we men-
tioned that there are system routines stored in ROM that are not destroyed
when the power is off. In the PC, they are called BIOS (Basic Input/Out-
puat Systcm) routines.

BlOS -

The BIOS routines perform 1/O operations for the PC. Unlike the -
DOS routings, which operate over the entire PC tamily, the BIOS routines
are machine specific. Each PC model has its own hardware configuration
and its own BIOS routines, which invoke the machine’s 1/0O port registers.
for input.and output. The DOS I/O operations are ultimately carried out by
the BIOS routines. »

Other impdrtant functions performed by BIOS are circuit checking
and loading of the DOS routines. In section 3.3.4, we discuss the loading of

DOS routines.

Chapter 3 Organization of the IBM-Personal Computers 47

o
Figire 3.4.-Memory-
Partitioned into: Disjojnti::
Segments::

Address . . . Y~ Segment
FFFFFH A .
FOOOh
FOO00h .
EFFFFh- = =
. £000h
£0000h —~ - ——
e
20000h
OFFFFh -
L 1000h
10000h
OFFFFh g
- L. . 000Ch
00000h

To let DOS and other programs use the BIOS routines, the addresses
of the BIOS routines, called interrupt vectors, arc placed in memory, start-
ing at 00000h. Some DOS routines also have their addresses stored there.

Because IBM has copyrighted its BIOS routines, 1BM compatibles use
their own BIOS routines. The degree of compatibility has to do with how
well their BIOS routines match the 1BM BIOS.

3.3.2°

Meumocy prggmzatlon of

the PC

. As indicated in-section 3.2.3, the 8086/6088 processor is capable of
addressing 1 megabyte of memory. However, not all the memory can be used
by an application program. Some meinory locations have special meaning
for the processor. For example, the flrst kilobyte (00000 to 003FFh) is used
for interrupt vectors.

Other memory locations are reserved by IBM for special purposes,
such as for BIOS routines and video display memory. The display memory
holds the data that are being displayed on the monitor.

- To show the memory map of the IBM PC, it is useful to partition

. the. memory into disjoint scgments. We start with segment 0, which ends at

location OFFFFh, so the next disjoint segment would begin at 10000h =
1000:0000. Similatly, segment 1000h ends at 1FI'FIh and the next disjoint
segment begins at 20000h = 2000:0000. Theretore the disjoint segments are
0000h, 1000h, 2000h, . .. FOOOh, and so moemory may be partitioned into
16 disjoint segments. Sce Figure 3.4.

Only the first 10 disjoint memory segments are used by DOS for
loading and running application programs. These ten segments, 0000h to
9000h, give us 640 KB of memory. The memory sizes of 8086/8088-based
PCs are given in terms of these memory segments. For example, a PC with
a 512-KB fmemory has only eight of these memory segments.

T

48 3.3 Organization of the PC

Figure 3.5 Memory Map of

the PC Address
BIOS
FO000h
Reserved
= EQOQ0h
Reserved
©0000h
Reserved
C0000h
Video
B00OOh
Video
A0000h

Application program area

DOS -
B1OS and DOS data
00400h
Interrupt vectors
00000h

Segments AOOOh and B0OOOb are used for video display mermory. Seg-
ments CO00h to EOOCh are reserved. Segment FOOOh is a special segment
because its circuits are ROM instead of RAM, and it contains the BIOS routines
and ROM BASIC. Figure 3.5 shows thc memory layout.

Table 3.1 Some Common I/0 Ports for the PC

Port Address Description
20h-21h interrupt controller
60h—-63h keyboard controller
200h-20Fh game controller
2F8h-2FFh serial port (COM 2)
320h-32Fh hard disk
378h-37Fh ' parallel printer port 1
3Coh-3CFh . tGA

3D0h-30Fh CGA

3F8h-3FFh serial port (COM1)

Chapter 3 Organization of the IBM Personal Computers 49

3 3. 3
1/0 Port Addnesses

“The 8086/8088 supports’ 64 KB of I/O ports. Some common port
addresses are given in Table 3.1.’In general, direct programming of 1/O ports
is not recommended because 1/O port address usage may vary amonyg com-
puter models.

3.34 .
Start-up Operation

‘Summary - o

When the PC.is powered up, the 8086/8088 processor is put in a
reset state, tife CS register is set to FFFFh, and 1P is set to 0000h. So the first
instruction it executes is located at FFFFOh. This memory location is in ROM,
and it contains an instruction that transfers control to the starting point of
the BIOS routines.

The BIOS routines first check for system and memory errors, and
then initialize the interrupt vectors and BIOS data area. Finally, BIOS loads
the operating system from the system disk. This is done in two steps; first,
the BIOS loads a small program, called the boeot program, then the boot
program loads the actual operating system routines. The boot program is so
named because it is pan of the operating system; having it load the operating
systeri is like the computer pulling itself up by the bootstraps. Using the
boot program isolates the BIOS from any changes made to the operating
system and lets it be smaller in size. After the operating system is loaded
into memory, COMMAND.COM is then given control.

e The IBM personal computer fdmxlly consists of the PC, PC X1, PC
AT, PS/1, and the PS/2 models. They use the Intel 8086 family of °
mlcroprocessors

. The 8086 family of mxcroprocessors consists of the 8086, 8088,
80186, 80188, 80286, 80386, 803865X, 80486, and 804865X.

¢ The 8086 and 8088 have .the same instruction set, and this forms
the basic set of instructions for the other microprocessors.

e The 8086 microprocessor contains 14 registers. They may be classi-
fied as data registers, segment registers, pointer and index regis-
ters, and the FLAGS register. .,

* The data registers are AX, BX, CX, and D%. These registers may
be used for general purposes, and they also perform special func-
tions. The high and low bytes can be addressed separately.

e Each byte in memory has a 20-bit =75 hex-digit address, starting
‘with 00000h. :

¢ Asegment is a 64-KB block of memory. Addresses in memory
may be given in segment ‘offset form.. The physical address is ob-
tained by mulnplymg the segmem numoer by 10h, and adding
" the offset.

¢ The segment reysiers are CS, DS SS and ES. When a machine

language program’ is'execiiting,' these registers contain the seg-
ment numbers of the code, data, stack, and extra data segments.

The pointer and index registers are SP, BP, SI, DI, and IP. SP is
used exclusiveiy for the stack segment. BP can be used to access
the stack segment. S1 and DI may be used to access data in arrays.

The IP contains the offset address of the next instruction to be
executed.

The FLAGS register contains the status and control flags. The sta-
tus flags are set according to the result of an operation. The con-
trol flags may be used to enable or disable certain operations of
the microprocessor.

DOS is a collection of routines that coordinates the operations of

the computer. The routine that executes user commands is

COMMAND.COM.

* [nformation stored on disk is organized into files. A file has a
name and an optional extension. .

* The BIOS routines are used to perform 1/O operations. The com-
patibility of PC clones with the IBM PC depends on how well
their BIOS routines match those of. the IBM PC. .

¢ The BIOS routines are responsible for system testing and loading
the operating system when the machine is turned on.

Glossary

basic input/output
system, BIOS

boot program
code scgment

COMMAND.COM
control flags

data segment
disk opcrating system,
DOS

external commands

file

file extension

file name

_flags
graphical user interface,
gui

Routines that handle input and output
operations

The routine that loads the operating
system during start-up

Memory segment containing a machine
language program’s instructions

The command processor for DOS

Flags that enable or disable certain
actions of the processor

Memory segment containing a machine
language program’s data

The operating system for the IBM PC

Commands that correspond to routines
residing on disk .

An organized, named collection of data
items treated as a single unit for storage
on devices such as disks

A period followed by one to three charac-
ters; used to identify the kind of file

A one- to eight-character name of a file

Bits of the FLAGS register

A user interface with pointers and graphi-
cal symbols

Chapter 3 Organization of the 1BM Personal Computers 51

internal commands

interrupt vectors - -
logical address
memory protection

memoi-y segment
mu]ti‘ta._sking
offset (of a inemory

location)
opcrating system

paragraph
paragraph boundary
physical address

protected (virtual address)
mode

rcal address mode
segment number
stack

stack scgmént

status flags
video display memory

virtual memory

DOS commands that are executed by
routines that are present in memory
Addresses of the BIOS and DOS routines
An address given in the form segment:offset
The ability of a processor to protect the
memory used by one program from being
used by another running program

A 64-KB block of memory

The ability of a computer to execute sev-
eral programs at the same time

The number of bytes of the location from
the beginning of a segment

A collection of programs that coordinate
the operations of the devices that make
up a computer system

16 bytes

" A hex address ending in 0

Address of a memory location; 8086-
based machines have 20-bit addresses

A processor mode in which the memory
used by one program is protected from
the actions of another program

. A processor mode in which the addresses

used in a program correspond to a physi-
cal memory address

Number that identifies a memory segment
A data structure used by the processor to
implement procedure calls

Memory segiment containing a machine
language program’s stack

Flags that retlect the actions of the processor
Memory used for storing data for display
on the monitor

The ability of the advanced processors to
treat external storage as if it were real in-
ternal memory, and therefore execute pro-
gramns that are too large to be contained
in internal memory

Exercises

1. What are the main differences between the 80286 and the 8086

processors?

. What are the differences between a register and a memory location?
3. List one special function for each of the data registers*AX, BX,

CX, and DX.

52

E.cercises

10.

Determine the physical address of a memory location given by
0AS51:CDS0Oh.

A memory location has a physical address 4A37Bh. Compute
a. the offset address if the segment number is 40FFh.
b. the segment number if the offset address is 123Bh.

What is a paragraph boundary?

What determines how compatible an IBM PC clone is with an au-
thentic IBM PC?

What is the maximum amount of memory that DOS allocates for
loading run files? Assume that DOS occupies up to the byte
OFFFFh.

For the following exercises, refer to Appendix B.

Give DOS commands to do the following. Suppose that A is the
logged drive.

a. Copy FILEL in the current directory to FILE1A on the disk in
drive B.]

Copy all files with an..ASM extension to the disk in drive B.
Erase all files with a .BAK extension

List all file names in the current directory that begin with A.
Set the date to September 21, 1991.

f. Print the file FILE5S.ASM on the printer.

Suppose that (a) the root directory has subdirectories A, B, and C;
(b) A has subdirectories Al and A2; (c) Al has a subdirectory A1Ag
Give DOS commands to

a. Create the preceding directory tree.

b. Make AlA the current airectory.

¢. Have DOS display the current directory.

d. Remove the preceding disectory tree.

R

Introduction to IBM
PC Assembly

Language

Overview

This chapter covers the essential steps in creating, assembling, and .
cxecuting an assembly language program. By the chapter's end you will be
able to write simple but interesting programs that carry.out useful tasks, and
run them on the computer. . .

As with any programming language, the first step is to learn the
svniax, which for assembly language is relatively simple. Next we show how
variables are declared, and introduce basic data movement and arithmetic
instructions. Finally, we cover program organization; you'll see that assembly
language programs are comprised of code, data, and the stack, just like a
machiine language program.

Because assembly language instructions are so basic, input/output is
much harder in assembly language than in high-level languages. We use DOS
functions for I/O; they are easy to invoke and are fast enough for all but the
most demanding applications.

An assembly language program must be converted to a machine
language program before it can be executed. Scction 4.10 explains the steps.
To demonstrate, we'll create sample programs: They illustrate some standard
assembly language programming techniques and scerve as models for the
exercises.

53

54 4.1 Assembly Language Syntax

4.1
Assembly Language
Syntax

Assembly language programs are translated into machine language
instructions by an assembler, so they must be written to conform to the
assembler’s specifications. In this book we use the Microsoft Macro Assembler
(MASM). Assembly language code is generally not case sensitive, but we use
upper case to differentiate code from the rest of the text.

Statements

Programs consist of statements, one per line. Each statement is either
an instruction, which the assembler translates into machine code, or an
asscmbler directive, which instructs the assembler to perform some spe;,
cific task, such as allocating memory space for a variable or creating a pro-
cedure.. Both instructions and directives have up to four fields:

name operation operand(s) comment

At least one blank or tab character must separate the fields. The fields do
not have to be aligned in a particular column, but they must appear in the
above order.
An example of an instruction is
START: MOV CX,5 iinitialize counter
Here, the name field consists of the label START:. The operation is
MOV, the operands are CX and 5, and the comment is ;initialize counter.
An example of an assembler directive is

MAIN PROC

r
MAIN is the name, and the operation field cohitains PROC. This particular
directive creat.'s a procedure called MAIN.

411 _
Name Field

The name field is used for instruction labels, procedure names, and
variable names. The assembler translates names into memory addresses.

Names can be from 1 to 31 characters long, and may consist of
letters, digits, and the special characters ? . @ _ $ %. Embedded blanks arejy
not allowed. If a pericd is used, it must be the tirst character. Names may
not begin with a digit. The assembler does not differentiate between upper
and lower case in a name.

Examples of legal names

CCUNTERI
totaractos

SU OF LITDIT3
& me

ALEKHYA
Highlight

ALEKHYA
Highlight

ALEKHYA
Highlight

Chapter 4 Introduction to IBM PC Assembly Language 55

' Examples of illegal names _

TWO WORDS contains a blank

2abc " begins with a digit
A45.28 . not first character
YOU&ME contains an illegal character

4.1.2
Operation Field

.. For an instruction, the operation field contains a symbolic operation
code (opcode). The assembler translates a symbolic opcode into a machine
language opcode. Opcode symbols often describe the operation’s function;
for example, MOV, ADD, SUB.

In an assembler directive, the operation field contains a pseudo-op-
eration code (pseudo-op). Pseudo-ops are not translated into machine code;
rather, they simply tell the assembler to do something. For example, the
PROC pseudo-op is used to create a procedure.

4.1.3
Operand Field

4.1.4
C_omment Field

For an instruction, the operand ficld specifies the data that are to

be acted on by the operation. An instruction may have zero, one, or two

operands. For example,

NOP ' , : no operands, does nothing
INC AX one operand; adds 1 1o the contents
. ~of AX
Y e
ADLC WORD1, 2 . two operands; adds 2 io the contents

of memory word WORD1

In 3 two-operand instruction, the first operand is the destination operand’

It is the register or memory location where the result is stored (note: some
instructions don't store the result). The second operand is the source op-
crand. The source is usually not modified by the instruction

For an asserbler directive, the operand field_usually contains more
information about the directive.

The comment field of a statement is used by the programmer to say
something about what the statement does. A semicolon marks the beginning
of this field, and the assembler ignores anything tvped after the semicolon.
Comimnents are optional, but because assembly language is so low-level, it is
almost impossible to understand an assembly language program without
comments. In fact,'good programming practice dictates a comment on al-
most every lin€. The art of good commentary is developed through practice.
Don't say something obvious, like this:

MOV CX, G : ;move .0 to CX
Instead, use comments to put the instruction into the context of the program:

MOV CX. 0 ;CX counts ter~~, initially 0O

56 4.2 Program Data

It is also permissible to make an entire line a comment, and 10 use them to
create space in a program:

;iritialize registers
MOV AX, 0

MOV BX, 0

4.2
Program Data

)

The processor operates only on binary data. Thus, the assembler
must translate all data representation into binary numbers. However, in an
assembly language program we may express data as binary, decimal, or hex
numbers, and even as characters.

Numbers

A binary nuinber is written as a bit string fo]lowed by the letter “B”
or “b”; forrexample, 1010B.

A decimal number is a string of decimal digits, endmg with an op-
tional “D” or “d”.

A hex number must begin with a decimal digit and end with the
le H” or “h”; for example, OABCH (the reason for this is that the assem-
bler would be unable to tell whether a symbol such as “ABCH” represents
the variable name “ABCH"” or the hex number ABC).

Any of the preceding numbers may have an optional sign.

Here are examples of legal and illegal numbers for MASM:

_Number Type
13I1 decimal @
1:%21B : binary
£4223 decimal
-21843D decimal
1,224 illegal—contains a nondigit character
13424 hex
184D) illegal hex number—doesn‘t end in "H”
FEFFH iliegal hex number—doesn’t begin with
a decimal digit
CFFFFH hex

Characters

Characters and character strings must be enclosed in single or double
quotes: for example, “A” or ‘hello’. Characters are translated into their ASCII
codes by the assembler, so there is no difference bctween using “A” and 41h
(the ASCII code for “A™) in a program. :

ALEKHYA
Highlight

ALEKHYA
Sticky Note
therefore a variable name cannot begin with a digit, since again the assembler would be confused if its s variable name or a hex number.

ALEKHYA
Sticky Note
If no symbol is specified then it is taken as decimal apparently.

ALEKHYA
Highlight

Chapter 4 Introduction to I1BM PC Assembly Language - 57

.. Table 4.1 Data-Defining Pseudo-ops

Pseudo-op Stands for
DB . . define byte
oW - ~ define word
DD : - S ~define doubleword (two consecutive
: words)
DQ . define quadword (four consecutive
words) .
DT define tenbytes (x’en consecutive bytes)

4.3
Variables

Variables play the same role in assembly language that theyv do in
high-level languages. Each variable has a data type and is assigned a memory
address by the program. The data-defining pseudo-ops and their nteanings
are listed in Table 4.1. Each pseudo-op can be used to set aside one or more
data items of the given type. ‘

In this section we use DB and DW to define byte variables, word
variables, and arrays of bytes and words. The other data-defining pseudo-ops
are used in Chapter 18 in connection with multiple-precision and noninteger
operations.

"

4.3.1 i
Byte Variables

The assembler directive that defincs a byte variable takes the follow-
ing form: :

name DB iﬁitial_value

where the ﬁseudo.ol) DB stands for ”D'cﬁnc Byte”.
For example,

ALPHA DB 4

This directive causes the assembler.to associate a memory byte with the name

- ALPHA, and initialize it to 4. A question mark (“?”) used in place of an initial

value sets aside an uninitialized byte; for example,

_ BYT DB 2

. , : . s
The decimal range of initial values that can be specified is -128 to 1271f a
signed interpretation is being given, or O to 255 for an unsigned irterpreta-

tion. These are the ranges of values that fit in a byte.

4.3.2
Word Variables

The assembler directive for defining a word variable has the follow-
ing form: o :

name DW '’ initial_valus

ALEKHYA
Highlight

58

4.3 Variables

The pseudo-op DW means "D’e_ﬁne Word.” For example,

WRD DW -2

as with byte variables, a question mark in place of an initial value means an
uninitialized word. The decimal range of initial values that can be specified
is -32768 to 32767 for a signed interpretation, or 0 to 65535 for an unsigned
interpretation.

4.3.3
Arrays

In assembly language, an array is just a sequence of memory bytcs
or words. For example, to define a three-byte array called B ARR/\Y whose
initial values are 10h, 20h, and 30h, we can write,

B_ARRAY bB 10H, 20H, 30H

The name B_ARRAY is associated with the first of these bytes, B_ARRAY+1
with the second, and B_ARRAY+2 with the third. If the assembler assigns the
offset‘addres_s\OZOOh to B_ARRAY, then memory would look like this:

Symbol Address . Contents
B_ARRAY 200h 10h
B_ARRAY+1 20th 20h

B_ARRAY+2 202h 30h

In the same way, an array of words may be defined. For example,

W_ARRAY DW 1000, 40,29887, 329

sets up an array of four words, with initial values 1000, 40, 29887, and 329.
The initial word is associated with the name W_ARRAY, the next one with
W_ARRAY + 2, the next with W_ARRAY + 4, and so on. If the array starts at
0300h, it will look like this: |

Symbol Address - Contents @
W_ARKAY 0300h 1000d
W_ARRAY+Z 0302h 40d
W_ARRAY+4 0304 29887d
W_ARRAY+6 0306h 329d

High and Low Bytes of a Word

Sometimes we nced to refer to the high and low bytes of a word
variable. Suppose we define

WORD1 CwW - 1234E

‘The low byte of WORD1 contains 34h, and the high byte contains 12h. The
low byte has symbolic address WORD], -and the high byte has symbolic-

. address WORD1+1. -

Character Strings

An array of ASCII codes can be initialized with a string of characters.
For example,

ALEKHYA
Sticky Note
+1 always shifts the pointer by one BYTE. Therefore to shift a pointer by one word, we use +2.

Personal
Sticky Note
1 byte=4 bits
1 word=4 bytes

Personal
Highlight

Personal
Highlight

Personal
Highlight

Personal
Highlight

Personal
Highlight

Personal
Highlight

Chapter 4 Introduction to IBM PC Assembly Language 59

" LETTERS DB ’ ‘ABC’

is equivalent to
.LETTERS DB 41H,42H, 43R

Inside a string, the assembler differentiates between upper and lower
case. Thus, the string “abc” is translated into three bytes with values 61h,

62h, and 63h. :
It is possible to combine characters and numbers in one definition;

for example, :
MSG DB ‘HELLO’, OAH, ODH, *$’ @

is equivalent to
—

MSG DB . © 48H, 45H, 4CH, 4CH, 4FH, CAH, GDH, 24K

«

4.4 ‘
Named Constants

To make aszembly language code easier to underg;tand, it is often
desirable to usc a symbolic name for a constant quantity.

EQU (Equates)

To assign a name to a constant, we can use the EQU (equates)
pseudo-op. The syntax is
name (RO constant
lor exampie, the statement ®

T . LA aey
[. SR

assigns the name Li to 0Al, the ASCI code of the line teed character. The
name LF may now be used in place of OAh anywhore in the program. Thus,
the assembler translates the instructions

MOV DL, UAH ’) @
and
MOV DL, LE

into the same machine instruction.
The symbol on the right 6f an EQU can also be a string. For example,

PROMET EZU TYPFE YOUR RAME’
Then instead of
MSG DB ‘TY;TE.\"O:_IR NAME’

we could say

Note: no memory is allocated for EOU nauscef.

ALEKHYA
Highlight

Personal
Sticky Note
'a'=61h '$'=24h
0AH,0DH for combinig characters and numbers

Personal
Highlight

Personal
Sticky Note
0AH line feed

60 4.5 A Few Basic Instructions

Figure 4.1 MOV AX,WORD1 Before After

0006 . 0008

AX AX

0008 0008

WORD1 ' WORD1 *

4.5
A Few Basic There are over a hundred instructions in the instruction set for the
Instrudctions 8086 CPU; there are also instructions designed especially for the more ad-

vanced processors (see Chapter 20). In this section we discuss six of the most
useful instructions for transferring data and doing arithmetic. The instruc-
tions we present can be used with either byte or word operands.

In the following, WORD1 and WORD2 are word variables, and
BYTE1 and BYTE2 are byte variables. Recall from Chapter 3 that AH is the
high byte of register AX, and BL is the low byte of BX.

4.5.1
MOV and XCHG The MOV instruction is used to transfer data between registers, be-
tween a register and a memory location, or to move a number directly into
a register or memory location. The syntax is
MOV destination, source
Here are some examples:
MGV AX,WORD1 .
This reads “Move WORD1 to AX”. The contents of register AX are replaced
by the contents of memory location WORD1. The contents of WORD1 are
unchanged. In other words, a copy of WORD1T is sent to AX (Figure 4.1).
MOV kK, B y ’
AX gets what was previously in BX. BX is unchanged.
MOV AH, ‘A’
.
Figure 4.2 XCHG AH.BL F Before After
l[_ 1A, 00 0s 00 l
AH AL AH AL .

ENEY

BH BL ~ BH BL

Chapter 4 Introduction to IBM PC Assembly Language 61

Table 4.2 Legal Combinations of Operands for MOV and XCHG
mov
Destination Operand

General Segment Memory

Source Operand | register register location Constant
’General register yes . yes yes no
Slegmént register | yes . - no yes_l no
Mehoq location yes . yes no . no .
Constant yes no yes no
XCHG .

- ' Destination Operand

' ’ General 'Memory

Source Operand | register location
General register yes yes
Memory location yes > no

This is a move of the number 041h (the ASCII code of “A”) into register AH.
The previous value of AH is overwritten (replaced by new value)~/
The XCHG (exchange) operation is used to exchange the contents
. of two registers,_or 4 register and a'memory location. The syntax is

XCHG destination,source
. An example is -

XCHG AH,BL

This instruction swaps the contents of AH and BL, so that AH contains what
was previously in BL ahd BL contains what was originally in AH (Figure 4.2).
Another example is) ' h

XCHG - AX,WORD1 ,

which swaps the contents of AX and Enemory location WORD1Y"

Restrictions on MOV and XCHG

Yor technical reasons, there are a few restrictions on the use of MOV
and XCHG. Table 4.2 shows the allowable combinations. Note in particular that
a MOV or XCHG between memory locations is not allowed. For example,

ILLEGAL: MOV WORDI1, WORD2

but we can gét around this restricticn by using a register:

MOV AX, WORD2Z
HOV WORD1, AX

62 4.5 A Few Basic Instructions

Figure 4.3 ADD WORD1,AX

Before -After
018C ’ 018C -
AX AX
0523 ° . 06DF
WORD1 WORD1

4.5.2
ADD, SUB, INC, and DEC

The ADD and SUB instructions are used to add or subtract the con-
tents of two registers, a register and a memory location, or to add (subtract)
a number to (from) a register or memory location. The syntax is

ADD destination, source
SUB destination, source
For example,

ALD WORD1, AX

This instruction, “Add AX to WORD1,” causes the contents of AX and mem-
ory word WORDI to be addéd, and the sum is stored in WORDI. AX is
unchanged (Figure 4.3).

SUB AX,DX

In this example, “Subtract DX from AX," the value of DX is subtracted from
the value of AX, with the difference being stored in AX. DX is unchanged

(Figure 4.4).

Table 4.3 Legal Combinations of Operands for ADD and SUB

-

Destination Operand

Figure 4.4 SUB AX,DX

Source Operand General register Memory location
General register yes yes
Memory location yes no
Constant yes yes
Before After
0000 FFFF
AX AX
0001 : 0001
DX ' DX

Chapter 4 Introduction to I8M PC Assémb/y Language 6’3.
1

Figure 4.5 INC WORD1

Before After
0002 0003
WORD1 WORD1 .
ADD BL,S

This is an addition of the number 5 to the contents of register BL.

As was the case with MOV and XCHG, there are some restrictions
on the combinations of operands allowable with ADD and SUB. The legal
ones are summarized in Table 4.3. Direct addition or subtraction between

memory locations is illegal; for example,

ILLEGAL: ADD BYTE1l,BYTE2
A solution is to move BYTE2 to a register before adding, thus

MOV AL,BYTE2 = : ;AX gets BYTE2

-ADD BYTE1, AL ;add it to BYTEl

INC (increment) is used to add 1 to the contents of a register or
memory location and DEC (decrement) subtracts 1 from a register or memory
location. The syntax is

-INC destination -
- DEC destination

For example,

INC WORD1

adds 1 to the contents of WORD1 (Figure 4.5;.‘
DEC BYTE1l A
subtracts 1 from variableé BYTE1 (Figure 4.6).

figure 4.6 DEC BYTET

Before) After

FFFE FFFD

BYTEN 8YTE

64 4.6 Translation of High-Level Language to Assembly Language

Figure 4.7 NEG BX

Before After
0002 FFFE
B8X BX

NEG is used to negate the contents of the destination. NEG does
this by replacing the contents by its two's complement. The syntax is *
NEG destination i

The destination may be a register or memory location. For example,

A
negates v.hg contents of BX (Figure 4.7).

Type Agreement of Operands

Thie operands of the preceding two-operand jnstruction must be of
the same type; that is, both bytes or words. Thus an instruction such as

r

MOV AX,BYTEL ;illagal

Ry
is not allowed. However, the assembler will accept both of the following

In the former case, the assemuler recsons that since the destination A is a_
byte, the source must be a byte, and it moves 411 into AH. In the lattercase1
it assumes that because the destination is a word so is the-source, and it

moves 0041h into AX. . -

4.5.3

NEG
HEG BX
instructions:
A0V AHL A
and
MCV AKX, A

Translation of
High-Level Language
to Assembly
Lanquage

To give you a feeling for the preceding instructions, we'll translate
some high-level language assignment statements into assembly language.
. Only MOV, ADD, SUB, INC, DEC, and NEG are used, although in some cases
a better job could be done by using instructions that are covered later. In
the discussion, A and B are word variables.

Statement Translation
8= R MOV AX, A ;move A into AX
MOV B, AX ;and then into B

% .
As was pointed out earlier, a direct mem.ory-memory move is illegal, so we
must move the contents of A into a register before moving it to B.

ALEKHYA
Highlight

Chapter 4 Introduction to IBM PC Assembly Language 65

A=5-A : MOV AX, 5" ;jput 5 in AX
- SUB AX,A ;AX contains 5 - A
MOV "A,AX . vput it in A

This example illbstrqles one approach to translating assignment statements:
do the arithmetic in a register—for example, AX—then move the result into

tt}e des}matnon vanable In this case, there is another, shorter way:
NEG A. | ;A = -A

ADD A,S5S 7R = 5.- A

The next example shows how to do multiplication by a constant.

A=B-2xA - MOV AX,B ;AX has B
L sSuUB AX,A ;AX has B - A
SUB AX, A ;AX has B - 2 < A

MOV A, AX . ;move result to A

4.7

Program Structure

1

" “Chapter 3 noted that machine language programs consist of code,
data, and stack. Each part occupies a memory segment. The same organiza-
tion is reflected in an assembly language program. This time, the code, data,

~ and stack are structured as program segments. Each program segment is trans-

lated into a memory segment by the assembler.

We will use the simplified segment definitions that were introduced
for the Microsoft Macro Assembler (MASM), version 5.0. They are discussed
further in Chaptez 14, along with the full segment definitions.

4.7.1
Memory Models

The size of code and data a program can have is determined b:
specifying a memory model using the MODEL directive. The syntax is

.MODEL : memuéy_moue]

.The.most frequently used memory models are SMALL, MEDIUM, COMPACT,
and LARGE. They are described in Table 4.4. Unless there is a lot of code or
data, the appropriate model is SMALL. The MODEL difective shoulé come

before any segment definition.

Table 4.4 Memory Models

, Model Description
SMALL code i one segrnent
E data in one segment

MEDIUM code in more than one segment
data in one segment

COMPACT code in.one segment -
data in more than one segment

LARGE - code in more than one segment“

data.in imore than orie,segmen
no array larger than 64k byte:
HUGE code in more than one segment
data in more than“one segment
arrays may be larger than 64k bytes

\

66 4.7 Program Structure

4.7.2
Data Segment

A program'’s data segment contains all the variable definitions.
Constant definitions are often made here as well, but they may be placed
elsewhere in the program since no memory allocation is involved. To declare

a data segment, we use the directive .DATA, followed by varlable and constant
declarations. For example, '

.DATA
WORD1 DW 2

' WORD2 DW 5 .
MSG DB ‘THIS IS A MESSAGE’
MASK EQU 10010010B @

4.7.3.
Stack Segment

The purpose of the stack segment declaration is to set aside.a block
of memory (the stack area) to store the stack. The stack area should be big
enough to contain the stack at its maximum size. The declaration syntax is

+STACK . " size

where sizd is an optional number that specifies the stack area size in bytes.
For example,

.STACK - 100H ' ’ ‘

sets aside 100h bytes for the stack area (a reasonable size for most applica-
tions). If size is omitted, 1 KB is set aside for the stack area.

- 4,74
Code Segment

- The codé segment contains a program’s instructions. T-he'-dec-

laration syntax is

.CODE name

_ where name is the optional name of the segment (there is no need for a

name in a SMALL program, because the assembler will generate an error).

Inside a code segment, instructions are organized as procedures The
simplest procedure deﬂnition is

name PROC

ibody of the procedure
name ENDP. -~

where name is the name of the procedure, PROC and ENDP are pseudo-ops
that delineate the procedure

Here ls an example of a code segment definition:
.CODE
MAIN PROC _
;imain procedure instructions

- MAIN ENDP

;jother procedures go here

ALEKHYA
Sticky Note
Use EQU for constant definitions.

.o

Chapter 4 Introduction to IBM PC Assembly Languag.e 57

4.7.5
Putting It Together

Now that you have seen all the program segment;, we can construct
the general form of a .SMALL model program. With minor variations, this
form may be used in most applications:

.MODEL SMALL

.STACK 100H”

.DATA ~

;data definitions go here
.CODE)

MAIN PROC

;instructions go -here
MAIN ENDP

;othex procedures go here

-END MAIN

The last line in the program should be the END directive, followed by name
of the main procedure.

4.8
‘Input and Output
Instructions

" In Chapter 1, you saw that the CPU communicates with the periph:
erals through 1/O registers called I/O ports. There are two instructions, IN and
OUT, that access the potrts directly. These instructions are used when fast [/O
is essential; for example, in a game program. However, most applications
programs do not use IN-and OUT because (1) port addresses vary among
computer models, and (2) it’s much easier to program /O with the service
routines provided by the manufacturer.

There are two categories of 1/O service routines: (1) the Basic In-
put/Output System (BIOS) routines and (2) the DOS routines. The BIOS rou-
tines are stored in ROM and interact directly with the 1/O ports. In Chapter
12, we use them to carry out basic screen operations such as moving the
cursor and scrolling the screen. The DOS routines can carry out more com-
plex tasks; for example, printing a character string; actually they use the
B1OS routines to perform direct I/O operations.

The INT Instruction

To invoke a DOS or BIOS routme the INT (mterrupt) instruction is
used. It has the format

INT interrupt_number

where interrupt_nuimnber is a number that specifies a routine. For example.
INT 16h”invokes a BIOS routine that performs keyboard input. Chapter 15

. covers the INT instruction in more detall. In the following, we use a particular

DOS routine, INT 21h.

4.8.1 -
INT 21h

INT 21h may be used to invoke a large number of DOS functions
(see Appendix C); a particular function is requested by placing a function
number in the AH register and invoking INT 21h. Here we are mterested in

"the following functions:

68 4.8 Input and Qutput instructions

Function number Routine

] single-key input

2 single-character output
9 character string output

INT 21h functions expect input values to be in certain registers and retur
output values in other registers. These are listed as we describe each functior

Function 1:

Single-Key Input

Input: AH =1

Output: AL = ASCII code if character key is pressed
= 0 if non-character key is pressed

.

To invoke the routine, execute these instructions:

MOV AH,1 ;input key function
INT 2ih ;ASCII code in AL

‘The processor will wait for the ‘user to hit a Key if necessary. If a characted
key is pressed, AL gets its ASCI] code; the character is also displayed on th¢
screen. If any other key is pressed, such as an arrow key, F1-F10, and so on|
AL will contain 0. The instructions following the INT 21h can examine Al
and take appropriate action. l

Because INT 21h, function 1, doesn’t prompt the user for input, he
or she might not know whether the computer is waiting for input or it
occupied by some computation. The next function can be used to gene?me
an input prompt.

Function 2: ~ .
Display a character or execute a control function

Input: AH /=2 : .
DL - = ASCII code of the display characier or
control character ’
Odtput: AL - = ASCII ¢ode of the display characier or
control character

To display a character with this function, we put its ASCII code in DL. Fos
example, the following instructions cause a question mark to appcar on tfic

screen:

MCV AH,2 ;display character function

MCV DL, '?¢ ;character is ‘2, ’
v INT 21h, ;displey character

After the character is displayed, the cursor advances to the next position or;
the line (if at the end of the line, the cursor moves to the beginning of the
next line).

Function 2 may also be used to perform control functions. If D!

contains the ASCIT code of 3 control character, INT 21h causes the contro
function to be performed. The principal control characters are as folldws:

Personal
Highlight

Personal
Highlight

Personal
Highlight

Personal
Highlight

Chapter 4 Introduction to IBM PC Assembly Language 69

o,
<
ASCll code {Hex) : Symbol Function
7 BEL beep (sounds a tone)
8" : - BS backspace
9 “HT tab
A W line feed (new line)
D CR carriage return (start of
: current line)
' On execution, AL gets the ASCII code of the control character.
1.9

4 First Program

Our first program will read a character from the keyboard and display
it at the beginning of the next line.

We start by displaying a question mark:
MOV AH,2 " ';display character function @
MOV DL, ‘2’ ;character is ‘2’
INT 21h : ;display character

The second instruction moves 3Fh, the ASCII code for “?”, into DL.
- - Next we read a character:

MOV BAH, 1 . :read character function
INT 21h ..,° icharacter in AL

Now we would like to display the character on the next line. Before
doing so, the character must be saved in another register. (We'll see why in
a moment.) . - ’

s . .
MOV BL, AL ;save it in BL

r .
To move the cursor to the beginning of the next line, we must execute a
carriage return and line fced. We can perform these functions by putting the
ASCII codes for them in DL and executing INT 21h.

MOV AR, 2 . ;display character function
MOV DL, ODH ’ ;carriage return '

INT 21h) ;execute carriage return
MOV DL, ORH ;line feed (7

INT 21h ;iexecute line feed

The reason why we had to move the input character from AL to BL is that
the INT 21h, function 2, changes AL.
Final]y'wg are ready to display the character:

MCV DL,BL | ' .. iget character
INT 21h T "7 7 :and display it

Here is the complete program:

. Program Listing PGM4_1.ASM

TITLE bGMd_l: ECHC PROGRAM

" MODEL SMALL .

.STACK 100H ’

--.CODE

MAIN PROC

;display ‘prompt-
MOV AH, 2 ;display character function

Personal
Sticky Note
Display from DL
Take input to AL
AL=1 input
AL=2 Output

70 4.10 Creating and Running a Program

MOV DL, 2’ ;character is '?2’
INT 21H ;display it
;input a character
MOV AH‘,l ;read character function
INT 21H-- ;character in AL
MOV BL, AL ;save it in BL
;go to a new line: .
MOV AH, 2 ;display character function
MOV DL, QDH :carriage return
INT 21H ;execute carriage return
MOV DL, OAH ;1line feed
INT 21H " ;execute lire feed
;display character
MOV DL, BL/ ;retrieve character
INT 21H . ;and display it
;return to DOS
MOV AH, 4CH. ;DOS exit function
INT 2/1H‘ ;exit to DOS
MAIN ENDP .
END MAIN 7 ’

Because no variables were used, the data segment was omitted.
Terminating a Program

The last two lines in the MALN procedure require some explanation.
When a program terminates, it should return control to DOS. This can 4e
accomplished by executing INT 21h, function 4Ch.

4.10
Creating and
Running a Program

We are now ready to look at the steps involved in creating and
running a program. The preceding program is used to demonstrate the pro-
cess. The four steps are (Figure 4.8):

1. Use a text editor or word processor to create a source prografn
file. ’
2. Use an assembler to create a machine language object file.
3. Use the LINK program (see description later) to link one or more
object files to create a run file.
4. Execute the run file.]
In this demonstratiori, the system files we need (assembler and linker,
are in drive C and the programmer’s disk is in drive A. We make A the defaul’
drive so that the files created will be stored on the programmer’s disk.

Step 1. Create the Source Program File

We used an editor to create the preceding program, with ﬁlg namlf
PGM4_1.ASM. The .ASM extension-is'the conventional extension used t(
identify an assembly language source file.

Personal
Sticky Note
ODH Carriage
OAH line feed

Chapter 4 Introduction to IBM PC Assembly Language 71

Figure 4.8 Programming
Steps

create source brogram
4
’ ASM
file
- y
* Assembler assembie source
- program
S '
.08J
file N
L 4
 Linker link object program
EXE
. file
*

Step 2. Assemble the Program

We use the Microsoft Macro Assemblér (MASM) to translate the
source file PGM4_1.ASM into a machine language object file called PGM

" 4_1.0B]. Tbe ;implest;commaﬁd is [user’s response appears in boldface):

1.

72 4.10 Creating and Running a Program

A>C:MASM PGM4_1;
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft. Corp 1981, 1988. All rights reserved.
50060 + 418673 Bytes symbol space free
0 Warning Errors
0 Severe Errors

After printing copyright information, MASM checks the source fije
for syntax errors. If it finds any, it will display the line number of each error
and a short description. Because there are no errors here, it ‘translates the
assembly language code into a machine language object file named
PGM4_1.0Bj.

i The semicolon after the preceding command means that we don't
want certain optional files generated. Let’s omit it and see what happens:

~>C:MASM PGM4_1)
Microsaf. (R) Macro Assembler Version 5.10
Copyrisht (C) Microsoft Corp 1981, 1%38. All rights reserved.
Okbject filzname {PGM4_.1.CBJ]:
Scurce listing (NUL.LST}: PGM4_1
i risss-refercnce [NUL.CRF}: PGM4_1
500606 - 418673 Bytes symbcel spave {ree
G Warnung Errors
C Severe Er:ors

This time MASM prints the names of the files it can create, then waits for
us to supply names for the files. The default names are enclosed in square
brackets. To accept a name, just press return. The default name NUL means
that no file will be created unless the user does specify a name, so we reply
with the name PGMJ4_1.

The Source Listing File

The source listing file {.IST file) is a linc-numbered text file that dis-
plays assembly language cude and the corresponding machine code side bv side,
and gives other information about the program. It is especially helpful for de-
bugging purposcs, because MASM's error messages refer to Line numbers.

The Cross-Reference File

The cross-refercnce file ((CRF file) is a listing of names that uppear
in the program and the line numbers on which they occur. It is useful in
locating variables and labels in a Jarge program.

Examples of .LST and .CRF files are shown in Appendix D, along ¥
with other MASM options.)

Chapter 4 Introduction to IBM PC Assembly Language 73

Step 3. Link the Program

. The ,OBJ fite created in step 2 is a machine language file, but it cannot’
be executed because jt doesn’t have the proper run file format. In particular,

1. because it is not known where a program will be loaded in mem-
ory for execution, some machme code addresses may not have
been filled in.

2. some names used in the program may not have been defined in
the program. For example, it may be necessary to create scveral
files for a large program-and a procedure in onc file may refer 1o

+ a name dcfined in another file. e

The LINK program takes one or more object files, fills in any missing

addresses, and combines the object files into a single executable file (EXE

file). This file can be loaded into memeory and run.
To link the program, type

2>C:LINK PGM4 1

As befare, if the scmiceton is omitted, the linker wil) prompt you tor names
of the cutput fiies generated. See Appendix D.

' Step 4. Run the Program

To run it, just type the run file name, witli or without the [EXE
extension.

A>PGMA_1

3 N

A

The peoviam prinds o 7" andt wails for us 1o enter a chajacter. We enter “A”
and the pregroe cehoes it on the next line.

4.11
Displaying a String

In our hm program. we llsed INY Z21h, functions 1 and 2, to read
and display a single character. Heee is anothier INT 21k fum'-(n that can be
used to display a cha:acte steing: - -

1 4 - -

INT 21h, Function 9:
Display a String

" Input: DX = offset address of string.
. The string must end with a ‘S’ character.

The “$” marks the end of the string and is not displaycd. If the siring contains
the ASCII code of a control character, the control function is performed.

" To demonstrate this function, we will write a progsa,. that prints
“HELLO!” on the screen. This message is defined in the data segment as

MSG DB ‘HELLO!S’

74 4.11 Displaying a-String

The LEA Instruction

INT 21h, function 9, expects the offset address of the character string
to be in DX. To get it there, we use a new instruction: 7

LEA destination, source

where destination is a general register and source is a memory location. LEA
stands for “Load Effective Address.” It puts a copy of the source ofiset address
into the destination. For example,

LEA DX, MSG

puts the offset address of the variable MSG into DX,

Because our second program contains a data segment, it will begin
with instructions that initialize DS. The following paragraph explains wh
these instructions are needed.

Program Segment Prefix

When a program is loaded in memory, DOS prefaces it with a 256-
byte program segment prefix (I’'SP). The PSP contains information about
the program. So that programs may access this area, DOS places its segment
number in both DS and ES before executing the program. The result is that
DS does not contain the segment number of the data segment. To correct
this, a program containing a data segment begins with these two instructions:

MOV AX, @DATA

MOV DS, AX
~. @Data is the name of the data segment defined by .DATA. The assembler
- translates the name @DATA into a segment number. Two instructions are
- needed because a number (the data segment number) may not be moved

—directly into a segment register.
With DS initialized, we may print the "HELLO!” message by placing

its address in DX and executing IN‘I‘ 21h:

LEA DX,MSG ;get message
MOV AH, 9 ;display string function
INT 21h ;display string

Here is the complete program:

Program Listing PGM4_2.ASM

TITLE PGM4_2: PRINT STRING PROGRAM
.MODEL SMALL

.STACK 100H

.DATA

MSG DB 'HELLO! S’

.CODE

MAIN PROC

;initialize DS

@ MOV AX, @DATA
) MOV DS, AX ;initialize DS
;display message]
“LEA DX, MSG o ;get message
. MOV AH,9 . _' .. ;display string function
: INT 21h ;display message

sreturn to DOS
MOV AH, 4CH

Personal
Highlight

Personal
Sticky Note
for string output

Personal
Highlight

Personal
Highlight

Personal
Sticky Note
Common for all programs
.TITLE prmg
.MODEL SMALL
.STACK 100H
.DATA

.CODE
MAIN PROC
	MOV AX, @DATA
 MOV DS, AX

	MOV AX, 4CH
 INT 21h
MAIN END P
	END MAIN

Chapter 4 Introduction to IBM PC Assembly Language 75

INT 21h ’ - :DOS exit
MAIN ENDP
END MAIN

And here is a sample execution:

A> PGM4-2
HELLO!

4.12
"A Case Conversion
Program

, .

We will now combine most of the material covered in this chapter
into a single program. This program begins by prompting the user to enter
a lowercase letter, and on the next line displays another message with the

letter in uppercase. For example,

ENTER A LOWERCASE LETTER:
IN UPPER CASE IT IS: A

We use EQU to define CR and LF as names for the constants ODH
and OAH. - .

CR EQU ODH

LF EQU OAR

The messages and the input character can be stored in the data seg-

- ‘ment like this:

MSG1 DB ‘ENTER A LOWERCASE LETTER: S’
MSG2 DB CR,LF, ‘IN UPPER CASE IT IS: '’

CHAR DB’ ?,'§’

In defining MSG2 and CHAR, we have used a helpful trick: because
the program is supposed to display the second message and the letter (after
conversion to upper case) on the next line, MSG2 starts with the ASCII codes
for carriage return and line feed; when MSG2 is displayed with INT 21h,
function 9, these control functions are executed and the output is displayed
on the next line. Because MSG2 does not end with ‘$’, INT 21h goes on and
displays the character stored in CHAR.

Our.program begins by displaying the first message and reading the
character: ‘

LEA DX,MSG1 ;get first message

MOV AH, 9 ;display string function

‘INT 21h . . idisplay first message

MOV AH,1 . ;read character function

INT 21h ;read a small letter into AL

- Having read a lowercase letter, the program must convert it to upper case.

.

In the ASCII character sequence, the lowercase letters begin at 61h and the
uppercase letters start at 41h, so subtraction of 20h from the contents of AL

does the conversion:

SUB AL, 20H -; -,iconvert it to upper case

- MOV CHAR,AL .- ;iand store it

._No;y' the program displays the second message and the uppercase letter:

76 4.12 A Case Conversion Program

LEA D«,MSG2 ;get second message
MOV AH,9 ;display string function
INT 2lh ;display message and uppercase letter

Here is the complete program:

Program Listing PGM4_3.ASM
TITLE PGM4__3: CASE CONVERSION PROGRAM
.MODEL SMALL

TACK 1N3R
.DATA
CR “EQU ODH
LF EQU 0AH
MSGl1 DB *ENTER A LOWEP. CASE LETTER: §$°
MSG2 DB ODH,CAY,’IN UPPER CASE IT IS: °’
CHAR DB 7,78
.CODE

MATN PROC
;initialize DS .
MoV AX, ®DATA ;get data segment

@ MOV DS,AX. ;initialize DS
;print user rrompt

LEA DX, MSG. ;get first message @
MOV AH, ;display string fun n
inNT 214 - ;display first message

;input 4 character and convert tc upper case
MOV AH,1 sread character functicn
INT 21H ;read a small letter into AL
5UB AL, 20H ;convert it to upper case
MCV CHAR,AL ~ ;and store it

;display on the .next ltine
LEA = DX, MSG2 :get second message
MOV A, 9, ;display string functicn
INT z:a;O ' ;display messagye and upper case

:D0S exit ’ ;letter in front
Mcv AH, 4CH
INT 21H ;DOS exit

MAIN . END2 { . -
END MAIN®

.k
Summary

¢ Assembly language programs are made up of statements. A state-
ment is either an instruction to be executed by the computer, or
a directive tor the asscinbler.

e Statements have name, operation, operand(s), and comment
fields. - :

. * A symbolic name can contain up to 31 characters. The characters
can be letters, digits, and certain special symbols. :

Numbers may be written in binary, decimal, or hex.

¢ Characters and character strings must be enclosed in single or
double quotes.

ALEKHYA
Highlight

ALEKHYA
Highlight

ALEKHYA
Sticky Note
Note that we use dx not dl for loading the address and calling out int 21h for printing.

Personal
Sticky Note
Program
.TITLE Lower_letter_to_upper
.MODEL SMALL
.STACK 100H
.DATA
	CR EQU 0DH
	LF EQU 0AH
	MSG1 DB 'Enter the letter in lower case : $'
	MSG2 DB 0DH,0AH,'In upper case is: '
	CHAR DB ?,'$'
.CODEMAIN PROC
	MOV AX,@DATA	MOV DS,AX
	LEA DX,MSG1
	MOV AH, 9
	INT 21h
	MOV AH,1
	INT 21h
	SUB AL,20H
	MOV CHAR,AL
 LEA DX,MSG2
 MOV AH,9
	INT 21h
	MOV AH,4CH
	INT 21H
MAIN ENDP
	END MAIN

Chapter 4 Introduction to IBM PC Assembly Language .?7

- Directives DB and DW are used to define byte and word variables,
respectively. EQU can be used to give names to constants.

A program generally contains a code segment, a data segment,
and a stack segment. s

MOV and XCHG are used to transfer data. There are some restric-
tions for the use of these instructions; for example, they may not
operate directly between memory locations.

ADD, SUB, INC, DEC, and NEG are some of the basic arithmetic
instructions. .

There are two ways to do input and output on the IBM PC: (1) by
direct communication with 1/O devices, (2) by using BIOS or DOS
interrupt routines.

The direct method is fastest, but is tedious to program and
depends on specific hardware circuits.

Input and output of cﬁamctéfs and strings may be done by the
DOS routine INT 21h.,

INT 21h, function 1, causes a keyboard character to be read into AL.

INT 21h, function 2, causes the character whose ASCII code is in

DL to be displayed. if DL contains the code of a control charac-
ter, the control function is performed.

e INT 21h, function 9, causes the string whose offset address is in
DX to be displayed. The string must ¢nd with a “$” character.

Glossary

- array
assembler dircctive

code segment

.CRF file

data scgment
dcstination opcrand -«

EXE file
instruction

<

Y

.LST file

mcmory modcl

A scquence of memory bytes or words

Directs the assembler to perform some
specific task

-Part of the program that holds the

instructions

A file created by the assembler that lists
namesthat appear in a program and line

- numbers where they occur

Part of the program that holds variables
First operand in an instruction—receives
the result

Same as run file

A statement that the assembler translates
to machine code

A line-numbered tile created by the assem-
bler that displays assembly language
code, machine code, and other informa-
tion about a program

Organization of a program that indicates
the amount of code and data

78

Glossary

object file

Program scgment prefix,

rsp

’

" pecudo-op

run file

source operand
source program file
stack4egment

variable

' The machine language file created by the

assembler from the source program file

The 256-byte area that precedes the pro-
gram in memory~—contains information
about the program

Assembler directive

The executable machine language file
created by the LINK program

Second operand in an instruction—-
usually not changed by the instruction
A program text file' created with a word
processor or text editor .

Part of the program that holds the run-
time stack '
Symbolic name for a memory location
that stores data

New Instructions

g T =

ADD INT 'NEG
DEC LEA SuB
INC MOV XCHG
New Pseudo-Ops
.CODE .MODEL EQU
.DATA . STACK
Exercises
1. Which of the following names are legal in IBM PC assembly

language?

a. TWO_WORDS

b. 21

¢. Two words

d. .e?

e. $145

f. LET’S_GO

2. Which of the following are legal numbers? If they are legal, tell
whether they are binary, decimal, or hex numbers. :

246
246h
1001
1,101
2A3h
FFEEh

L]
-0 Q0 o

Chapter 4 Introduction to IBM PC Assembly Language - 79

g. OAh
h. Bh
i. ‘1110

3. Hfitis legal give data definition pseudo-ops 10 define each cf the
following.
~a. A word variable A initialized to 52
A word variable WORD1, uninitialized
A byte variable B, initialized to 25h
A byte variable C1, uninitialized
A word variable WORDZ2,.initialized to 65536
A word array ARRAY], initialized to the first five positive
integers (i.e. 1-5)
g- A constant BELL equal to 07h
‘h. A constant MSG equal to ‘THIS IS A MESSAGES’

4. Suppose that the following data are loaded starting at offset 0000h:

-0 an o

A DB -7
B DW " 7 1ABCh
c DB L ‘HELLO'

_Give the offset address assigned to variables A, B, and C.
Give the contents of the byte at offset 0002h in hex.
“Give the contents of the byte at offset 0004h in hex.
Give the offset address of the character “O” in “HELLO.”

S. 'l”ell whether each of the following instructions is legal or illegal.
W1 and W2 are word variables, and Bl and B2 are byte variables.

a. MOV DS,AX
MOV DS, 1000h
MOV CS,ES
MOV W1, DS
XCHG W1,W2
SUB 5, B1

ADD B1,B2
ADD AL, 25%
MOV W1,Bl

6. Using only MOV, ADD, SUB, INC, DEC, and NEG, translate the
following high-level language assignment statements into assem-
bly language. A, B, and C are word variables.

S

- Fm - AN o

a. A=B-A
b. A——(A+l)
[ohy C=A+B

d B=3xB+7 '
e. A=B-A-1
7. Wirite instructions (not a complete program) to do the following.
a. Read a character, and display it at the rnext position on the
same line.
b. Read an uppercase letter (omit error checking), and display it
at the next position on the same line in lower case.

80

Programming Exercises

Programming Exercises

8.

10.

11.

12.

Write a program to (a) display a “?”, (b) read two decimal digits
whose sum is less than 10, (¢) display them and their sum on the
next line, with an appropriate message.

Sample execution:

227 ‘

THE SUM OF 2 AND 7 IS 9

Write a program to (a) prompt the user, (b) read first, middle, and
last initials of a pcrson’s name, and (c) display them down the
left margin.

Sample execution:

ENTER THREE INITIALS: JFK

J

£

K .

Write a program to rcad one of the-hex digits A-I, and display it
on the next line in decimal.

Sample execution:

"ENTER A HEX CLLIGIT: C

IN DECIMAL IT IS 12

Write a program to display a 10 x 10 solid box of asterisks.
Hint: declare a string in the data segment that specifies the box,
and display it with INT 21h, function 9h.

Write a program to (a) display “?”, (b) read three initials, (c) dis-
play them in the middle of an 11 x 11 box of astcrisks, and (d)
beep the computer. .

The Processor Status
and the FLAGS

Register

Overview

One important feature that distinguishes a computer from other ma-
chines is the computer’s aljlity to make decisions. The circuits in the CPU
can perform simple decision making based on the current state of the pro-
cessor. For the 8086 processor, the processor state is implemented as nine
individual bits called flags. Each decision made by the 8086 is based on the
values of these flags.

The flags are placed in the FLAGS register and they are classified as
cither status flags or control tlags. The status flays reflect the result of a
computation. In this chapter, you will see how iy are affected by the
machine instructions. In Chapter 6, you will sc: how they are used to im-
plement jump instructions that allow progr ..s to have multiple branches
and loops. The control flags are -used to en.ole or disable certain operations
of the processor; they are covered in later ci apters.

In section 5.4 we introduce the DOS prcgram DEBUG. We'll show
how to use DEBUG 10 trace through a user progruin and to display registers,
flags, and memory locations.

5.1 .
The FLAGS Register

Figure 5.1'shows the FLAGS rceygister. The status flags are located
in Lits 0, 2, 4, 6, 7, and 11 and the control flags are located in bits §, 9, and
10. The other bits have no significance. Nole: it's not important to remember

81

Personal
Highlight

Personal
Highlight

Personal
Highlight

82 5.1 The FLAGS Register

Figure 5.1 The FLAGS
Register

15 14 13 12 11 10 9 8 7 6 S5 4 3 2

L1 1 | lorloe[w]re]sefze] far] fe] ‘]:F]

which bit is which flag—Table 5.1 gives the names of the flags and their

symbols. In this chapter, we concentrate on the status flags.-

The Status Flags

As stated earlier, the processor uses the status flags to reflect the
result of an operation. For example, if SUB AX,AX is executed, the zero flag
becomes 1, thereby indicating that a zero result was produced. Now let’s get

*to know the status flags.

Carry Flag (CF)

CF = 1 if there is a carry out from the most significant bit (msb) on
addition, or there is a borrow into the msb on subtraction; otherwise, it is
0. CF is also affected by shift and rotate instructions (Chapter 7).

Parity Flag (PF)

PF = 1 if the low byte of a result has an even number of one bits
(even parity). It is O if the low byte has,odd parity. For exampl®, if the result
of a word addition is FFFEh, then the low byte contains 7 one bits, so PF = Q.

Table 5.1 Flag Names and Symbols

Status Flags

Bit . Name Symbol
0 Carry flag CF
2 Parity flag PF
4 Auxiliary carry flag AF
6 Zero flag ZF
7 . Sign flag) SF
1 . Overflow flag QF
-Control Flags ;
Bit Name “Symbo#
8 Trap flag TF
9 Interrupt flag IF

10 ’ Direction flag DF

ALEKHYA
Highlight

Chapt\er' 5 The Processor Status and the FLAGS Register . 83

Auxiliary Carry Flag (AF)

AF = 1 if there is a carry out from bit 3 on addition, or a borrow intc
bit 3 on subtraction. AF is used in binary-coded decimal (BCD) operations

(Chapter 18).

Zero Flag (ZF)
ZF = 1 for a zero resuit, and ZF = O for a nonzero result.i

‘Sign Flag (SF)

SF = 1 if the msb of a result is 1; it means the result is negative if
you are giving a signed interpretation. SF = O if the msb is O.

.Overflow Flag (OF) . o)
OF =1 if signed overflow occurred, otherwise it is 0. The meaning

-of overflow is discussed next.

5.2

Overflow

The phenomenon of overflow is associated with the fact that the
range of numbers that can be represented in a computer is limited.
Chapter 2 explained that the (decimal) range of signed numbers that

‘can be represented by a 16-bit word is -32768 to 32767; for an 8-bit byte
-the range is ~128 to 127. For unsigned numbers, the range for a word is 0

to 65535; for a byte, it is 0 to 255. If the result of an operation falls outside
these ranges, overflow occurs and the truncated result that is saved will be

X incorrect.

Examples of Overflow

Signed and unsigned overflows are indgpendent phenomena. When
we perform an arithmetic operation such as addition, there are four possible
outcomes: (1) no overflow, (2) signed overflow only, (3) unsigned overflow
only, and (4) both signed and unsigned overflows.

As an example of unsigned overflow but not signed overﬂow sup-
pose AX contains FFFFh, BX contains 0001h, and ADD AX,BX is executed.

" The binary result is

S 111111111111 111
+ 0000 0000 0000 0001

* 1 0000 0000 000G (60O

If we.are g:vm;, an unsigned interpretation, the correct answer is
10000h 65536, but this is oul of range for a word operation. A 1 is cariied
out of the msb and the answer stored in AX, 0000h, is wrong, so unsigned
overflow occurred. But the stored anbwer is correct as a signed number, for
FFFFh = -1, 0001h = 1, and FFFFh + 0001h = -1 + 1 = 0, so signed overflow

did not occur.
As an example of signed but not unsigned overflow, suppose AX and

- BX both contain 7FFFh, and we execute ADD AX BX. The bmary result is

ALEKHYA
Highlight

84

5.2 Overflow

0111 1111 1111 1111
+ 0111 1111 11111111

11111117 1111 1110 = FFFEh

The signed and unsigned decimal interpretation of 7FFFh is 32767. Thus for
both signed and unsigned addition, 7FFFh + 7FFFh = 32767 + 32767 = 65534.
This is out of range for signed numbers; the signed interpretation of the
stored answer FFFEh is -2, so signed overflow occurred. However, the un-
signed interpretation of FFFEh is 65534, which is the right answer, so there
is no unsigned overflow.

There are two questions to be answered in connection with overflow:

(1) how does the CPU indicate overflow, and (2) how does it know that
overflow occurred?

How the Processor Indicates Overflow

The processor sets OF = 1 for signed overflow and CF = 1 for unsigned
overflow. It is then up to the program to take appropriate action, and if
nothing is done immediately the result of a subsequent instruction may
cause the overflow flag to be turned off.

in determining overflow, the processor does not interpret the result
as aither signed or unsigned. The action it takes is to use both interpretations
for cach operation and to turn on CF or OF for unsigned overflow or signed
overflow, respectively.

It is the programmer who is mterprctm;, the results. if a-signed in-,
terpretation is being given, then only OF is of interest and CF can be ignored;
conversely, for an unsigned interpretation CF is important but not OF.

How the Processor Determines that Overflow Occurred

Many instructions can cause overflow; for simplicity, we’ll limit the
discussion to addition and subtraction.

Ur;signed Overflow

On addition, unsigned overflow occurs when there is a carry out of
the msb. This means that the correct answer is larger than the biggest un-
signed number; that is, FFFFh for a word and FFh for a byte. On subtraction,
unsigned overflow occurs when there is a borrow into the msb. This means
that the correct answer is smailer than Q.

Signed Overflow

_ On addition of numbers with the same sign, signed ovérflow occurs
when.the sum has a different sign. This happened in the preceding example
when we were adding 7FFFh and 7FFFh (two positive numbers), but got
FEFEL (2 negative result), '

Subtraction of numbers with different signs is like adding numbers
of the same sign. For example, A - (-B) = A + B and -A -(+B) = -A + -B.
Signed overflow occuss if the. result has a. dix’ferem sign than expected. See
example 5.3, in the next section:

In addition of numbers with different signs, “overflow is imposslb!e,
because a sum like A + { -B) is really A - B, and because A and B are small
enough to fit in the destination, so is A - B. For exactly the same reason,
subtraction of numbers with the'same sign cannot give overflow.

ALEKHYA
Highlight

Chapter 5 The Processor Status and the FLAGS Register 85

’

Actually, the processor.uses the following method to set the OF: If
the carries into and out of the msb don’t matgh—that is, there js a carry into
the msb but no carry out, or if there is a carry out but no cagry in—then
signed overflow has occurred, and OF is set to 1. See example 5.2, in the
next section.

5.3
How Instructions
- Affect the Flags

. / .

In general, each time the processor executes an instruction, }lfc tlags .
are altered to reflect the result. Howc.'\lcr, some instructions don’t affect any
of the flags, affect only some of them, br may leave them undefined. Because
the jump instructions studled in Chapter 6 dependdon the flag settings, it’s
important to know what each instruction does to the flags. Let's return to

the seven basic instructions introduced in Chapter 4. They affect the flags
as follows: ' .

v

Instruction . ‘Affects flags

MOV /XCHG,) none

ADD/SUB ' alt

INb{DEC all except CF

NEX " all (CF = 1 unless result is 0,

OF = 1 if word aperand 1s 800Ch,
or byte operand is 80h)
To,_get you used to seeing how these instructions affect the flags, we will do
several examples. In each example, we give an instruction, the contents of
the operands, and predict the result and the settings of CF, PE, ZI; SF, and
OF (we ignore AF because it is used only for BCD arithmetic).

‘Example §.1 ADD AX,BX, where AX contains FEFFh, BX contains

FFFFh.

Solution: }FFFh
+ I-’F_I-'l’h
1 FFYth

The result stored In AX is FFFEh = 1111 141y i1l 1 .

SF = 1 because the msb is 1.

PF = 0 because there are 7 (odd number) of 1 bits in the low byte
of the result.

ZF = 0 because the result is nonzero.
CF = 1 because there is a carry out of the msb on addition.

OF = 0 Because the sign of the stored result is the same as that of
tho_ nuinbers being added (as a binary addition, there is a
carry into the msh and also a carry out).

Example §.2 ADD AlBL, where AL contains 80h, B contains 80h.

Solution: " 80h - '
+ R0h.
1 0Ch

86 5.3 How Instructions Affect the Flags

The result stored in Al is OOh.

SF = 0 because the msb is 0.

PF = 1 because all the bits in the result are 0.

ZF = 1 becausc the result is 0.

CF = 1 because there is a carry out of the msb on addition.

OF = 1 because the numbers being added are both negative, but
the result is O (as a binary addition, there is no carry into
the msb but there is a carry out).

Example §.3 SUB AX,BX, where AX contains 8000h and BX contains
0001h.

Solution: s 8000h
-0001h

7FFFh=0111 1111 1111 1111

The result stored in AX {% fm
SF = 0 because the msb is 0.

PF = 1 because there are 8 (even number) one bits in the low byte
of the result.

ZF = 0 because the result is nonzero.

CF = 0 because a smaller unsigned number is being subtracted
from a larger one.

Now for OF. In a signed sense, we are subtracting a positive number from
a negative one, which is like adding two ncgatives. Because the result is
positive (the wrong sign), OF = 1.

Example 5.4 INC Al, where AL contains FFh.

Solution: FFh
+ 1h

) T00h
The result stored in AL is 00h. SF = 0, PF = 1, ZF = 1. Even though there

is a carry out, CF is unatfected by INC. This means that if CF = 0 before |
the execution of the instruction, CF will still be 0 afterward.

OF = 0 becausé numbers of unlike sign are bemg added (there is a carry
into the msb and also a carry out). .
Example 5.5 MOV AX, -5

Solution: The result stored in AX is =5 = FFFBh.

None of the flags are aifected by MOV.

Example 5.6 NEG AX, where AX contains 8000h.

A

Chapter 5 The Processor Status and the FLAGS Register &7

Solution: 8000h = 1000 0000 0000 0000.
one’s complement- 011111111111 1111
’ +1

. 1000 0000 0000 0000 = 8000h
The result stored in AX is 8000h : [
SF=1,PF=1,ZF = 0.

.CF = 1, because for NEG CF is always 1 unless the result is 0.

OF = 1, because the result is 8000h; when a number is negated,
we would expect a sign change, but because 8000h is
its own two’s complement, there is no sign change.

In the next section, we mtroduce a program that lets us see the actual
settmg of the flags. .

7>

‘5.4
The DEBUG Program

. The DEBUG progrém provides an environment in which a program
may be tested. The user can step through a program, and display and change

" the registers and memory. It is also possible to enter assembly code directly,

which DEBUG converts to machine code and stores in memory. A tutorial
for DEBUG and CODEVIEW a more sophisticated debugger, may be found
in Appendix E.

We use DEBUG to demonstrate the way instructions affect the flags.
To that end, the following program has been created.

Program Listing PGMS5_1.ASM

TITLE PGMS 1:CHECK FLAGS

;used in DEBUG to: check flag settxnga
.MODEL SMALL

.STACK 100H

.CODE

MAIN PROC o

T Mov AX, 4000H ;AX = 4000h
ADD - AX,AX- ihX = 8000h
SUB. AX,OFFFFH ;ax ='8001h
NEG AX - iAX =]FFFh
INC- AX : :AX .8000h
MOV AH, 4CH

, INT - 21H ;:DOS exit

MAIN ENDE .
END ~ MAIN

We ‘assemble and link the program, producing the run file

; PGMS 1.EXE, which is on a disk in drive A. In the following, the user’s

responses are in boldface.
The DEBUG piogram is on the DOS disk, which is in drive C. To

., enter DEBUG with our demonstration program, we type

'C>DEBUG A:PGMS_1.EXE

"DEBUG tesponds by'its prompt, “ =¥, and waits for a commagd to be entered)
First, we can view the registers by typing “R”. :

88

5.4 The DEBUG Program

_R -

AX=0000 BX=0000 CX=001F DX=0000 SP=000A BP=0000 SI1=0000 DI=0000
DS=QEDS5 ES=0EDS SS=0EES CS=0EE6 IP=0000 NV UP DI PL NZ NA PO NC
QEE6:0000 BB0040 MOV AX, 4000

The display shows the contents of the registers in hex. On the third line of
the display, we see

OEE6:0000 B80Q40 MOV AX,4000

OEE6:0000 is the address of the next instruction to be executed, in segs
ment:offset form. B80040h is the machine code of that instruction. Segment
OEE6h is where DOS decided to load the program; if you try this demonstra-
tion, you will &robably see a different segment number.

. The eight pairs of letters appearing on the sccond line at the right
are the current flag settings. The flags appear in this order: OF, DF, IF, SF, ZF,
AT, PE, and CF. Table 5.2 gives the symbols DEBUG uses for the flags. You
can see that they have been cleared by DEBUG. The meaning of the control
flag symbols are explained in Chapters 11 and 15.

To step through our program, we use the “7” (trace) command. Be-
fore doing so, let’s display the registers again.

-R

AX=0000 BX=0000 CX=001F DX=0000 SP=000A BP=0000 SI=0000 DI=0000
DS=QEDS ES=0EDS SS=0EES CS=0EE6 IP=0000 NV UP DI PL NZ NA PO NC
OEE6:0000 B30040 MOV AX, 4000

The first instruction is MOV AX,4000h.

~

~-T

AX=4000 EX=CC00 CX=J01F DX=0000 SP=0C0A EP=C000 SI=0000.0I=3000
28=0FEDS% ES=CEDS SS=0EES CS=0EE$ IF=0003 NV UP DI PL NZ & PO NC
CEE6:5003 T3TC ALD L AXK,AX

Execution of MOV AX,4000h puts 4000h in AX. The flags are un-
changed since a MOV doesn’t affect them. Now let’s execute ADD AX,AX:

-7

AX=8000 BX=0(J0 CX=001F DX=0000 $P=000A BP=0000 SI=0000 pI=2000
DS=0EDS ES=0EDS5 S$S=0EES CS=0EE6 IP=0005 OV UP DI NG Nz NA PE NC
OEE6:0005 2DFFFF SuUB AX, FFFF

Chapter 5 The Processor Status and the FLAGS Register 89

Table 5.2 DEBUG Flag Symbols

Status Flag i Set (1) Symbol Clear (0) Symbol
CF . ‘CY A{carry) NC (no carry)
PF PE (even parity) PO (odd parity)
AF AC (auxiliary carry) NA (no auxiliary carry)
ZF ZR (zero) NZ (nonzero)
SF NG (negative) PL (plus)
OF . . OV (overfiow) NV (no overfiow)
" Control Flag
DF . DN ‘(down) UP (up)
IF ' " €l (enable interrupts) DI (disable interrupts)

AX now contains 4000h + 4000h = 8000h. SF becomes 1 (NG) to indicate
a negative result. Signed overflow is indicated by OF = 1 (OV) because we
added two positive numbers and got a negative result. PF = 1 (PE) because
the low byte of AX contains no 1's.

Next we trace SUB AX,0FFFFh:

-T

AX=8001 BX=0000
DS=CEDS> ES=QED5
OEE6:0008 F7D8

CX=001F DX=0000 SP=000A BP=0000 SI=00C0 DI=0000
5S=0EES CS=QE£6 1P=0008 NV UP DI NG NZ AC PO CY
NEG AX

AX gets 8000h - FFFFh = 8001h, OF changes back to 0 (NV), because we are

. subtracting numbers of like sign, so signed overtiow is impossibie. However,

CF =1 (CY) indicates that we got unsigned overflow, because we have sub-

tracted a bigger unsigned number from a smaller one, which requires a bor-

row into the msb. PF = 0 (PO) because the low byte of AX has a single 1.
Now let's trace NEG AX:

-T

AX=T7FfEF BX=0000
DS=JEDS ES=0EDS
OEE6:000A 49

CK=001F DX=OOOQ SP=000A BP=0000 SI=0000 DI=0000
$S=0LES CS=0Ek% 1P=000A NV UP DI PL NZ AC PE CY
INC AX

.

AX gets the two's complement of 8001h = 7FFFh. For NEG, CF = 1 (CY)
unless the result is 0, which is not the case here. OF = 0 (NV) because the
result is not-8000h.

Finally, we execute INC AX:

90

Summary

-T
AX=8000 BX=0000 CX=001F DX=0000 SP=000A BP=0000 SI=0000 DI=0000
DS=0ED5 ES=0EDS SS=0QEES CS=0EE6 IP=000B OV UP DI NG NZ AC PE CY

OEE6:000B B44C MOV AH, 4C

OF changes back to 1 (OV) because we added two positives (7FFFh and 1),
and got a negative result. Even though there was no carry out of the msb,
CF stays 1 because INC doesn’t affect this flag.

To complete execution of the program, we can type “G” (go):

-G .
Program terminated normally

and to exit DEBUG, type “Q” (quit)

-Q
Cc>

Summary \

* The FLAGS register is one of the registers in the 8086 microproces-
sor. Six of the bits are called status flags, and three are control flags.

e The status flags reflect the result of an operation. They are the
carry flag (CF), parity flag (PF), auxiliary carry flag (AF), zero flag
(ZF), sign flag (SF), and overflow flag (OF).

* CFis 1 if an add or subtract operation generates a carry out or
borrow into the most significant bit position; otherwise, it is 0.

s PFis 1 if there is an even number of 1 bits in the result; other-
wise, it is 0.)
e AFis1ifthereisa carry out or borrow into bit 3 in the result;
otherwise, it is 0.
o ZF is 1 if the result is O; otherwise, it is O.
e SFis 1 if the most significant bit of the result is 1; otherwise, it is 0.

e OFis 1 if the correct. signed result is too big to fit in the destina-
- tion; otherwise,:it is.0,.-..- -~ — - :

Chapter 5 The Processor Status and the FLAGS Register 91

Overflow occurs when the correct result is outside the range of
values represented by the computer. Unsigned overflow occurs if
an unsigned interpretation is being given to the result, and
signed overflow happens if 4 signed interpretation is being given.

The processor uses CF and OF to indicate overflow: CF = 1 means
that unsigned overflow occurred, and OF = 1 indicates signed
overflow.

The processor sets CF if there is a carry out of the msb on addi-

tion, or a borrow into the msb on subtraction. In the latter case,
this means that a larger unsigned number is being subtracted

* from a smaller one.

The processor sets OF if there is a carry into the msb but no carry
out, or if there is a carry out of the msb but no carry in.

There is another way to tell whether signed overflow occurred on ad-
dition and subtraction. On addition of numbers of like sign, signed
overflow occurs if the result has a different sign; subtraction of num-
bers of different sign is like adding numbers of the same sign, and
signed overflow occurs if the result has a different sign.

On addition of numbers of different sign, or subtraction of num-
bers of the same sign, signed overflow is impossible.

Generally the execution of each instruction affects the flags, but
some instructions don't affect any of the flags, and some affect
only some of th2 flags.

The settings of the flags is part of the DEBUG display.

The DEBUG program may be used to trace a program. Some of its
commands are “R”, to display registers; “T”, taetrace an instsuc-
tion; an? “G”, to execute a program.

. flags

1.

Glossary -
control flags Flags that are used to’e nable or disable
) certain operations of the CPU

Bits of the FLAGS register that represent a

LT " condition of the CPU

FLAGS register Register in the CPU whose bits are Tlags

‘status flags . Flags that reflcct the result of an instruc-
tion executed by the CPU

Exercises

For cach of the following instructions, give the new destination
contents and the new settings of CE SE ZE PE, and OF. Suppose

-that the flags are initially 0 in each part of this question.

a. ADD aX,BX where AX contains 7FFFh and BX
contains 0001h

b. sus AL,BL wl;;ere AL contains 01h and BL contams
FF

¢. DEC AL where AL contains 00h

92

Exercises

. NEG AL where Al contains 7Fh
e. XCHG AX,BXx where AX contains 1ABCh and BX
contains 712Ah .
f. ADD AL,BL where AL contains 80h and BL contains
FFh
g. SUB AX,BX where AX contains 0000h and BX
contains 8000h

h. NEG 'Ax where AX contains 0001h

a. Suppose that AX and BX both contain positive numbers, and

ADD AX,BX is executed. Show that there is a carry into the
" msb but no carry out of the msb if, and only if, signed over-
flow occurs.

b. Suppose AX and BX both contain negative numbers, and
ADD AX,BX is executed. Show that there is a carry out of the
msb but no carry into the msb if, and only if, signed over-
flow occurs. '

Suppose ADD AX,BX is executed. In each of the following parts,

the first number being added is the contents of AX, and the sec-

ond number is the contents of BX. Give the resulting value of AX
and tell whether signed or unsigned overflow occurred.

-

a. 512Ch
+4185h

b. FEI12h
+ 1ACBh

c. ElL4h
+ DAB3h

d. 7132h
+7600h

e. 638%h
+1176h

Suppose SUB AX,BX is executed. In cach of the following parts,
the first number is the initial contents of AX and the second
nuinber is the contents of BX. Give the resulting value of AX and
tell whether signed or unsigned overflow occurred.

a. 2143h -
- 1986h

b. 81FEh
- 1986h

c. 19BCh
- 81FLh

d. 0002h
- FEOFh

e. 8BCDh
- 71ABh

Flow Control
Instructions

Owerview For assembly language programs to carry out useful tasks, there must
‘be a way to make decisions and repeat sections of code. In this chapter we
show how these things can be accomplished with the jump and loop in-
structions.

_The jump and loop instructions transfer control to another part of
lM&rarrT’Thls transfer can be unconditional or can depend on 2 partic-
ular combination of status flag settings.

- After introducing the jump instructions, we’ll use them to 1mplement
high-level language decision and looping structures. This application will make
it much easier to convert a pseudocode algorithm to assembly code,

.1
in Exa'n'wp'le of To get an idea of how the jump instructions work, we will write a
) Jump program to display the entire IBM character set.

R .'Program "Listing PGM6_1.ASM
1: TITLE FPGM6_1: 1BM CHARACTER DISPLAY

2: .MODELS SMALL

3: .STACK’ 100H

4: .CODE *

5: MAIN- PROC

6:. MOV ~ AH,2% ;display char function

7 MOV CX,256" ino. of chars to"display

8: MOV DL, 0 ;DL .has ASCII code of null che
9: PRINT_LOOP: ' :

93

94 6.2 Conditional Jumps

6.2
Conditional Jumps

10: " INT 21h ;jdisplay a char

11: INC DL ;sincrement ASCII code
12: DEC CX ;decrement counter

13: JN2 PRINT_LOOP +keep going if CX not 0
14: ;DOS exit :

15: MOV AH, 4CH

16: " CINT 21h

17: MAIN ENDP

18: ~ END MAIN

There are 256 characters in the IBM character set. Those with codes 32
to 127 are the standard ASCII display characters introduced in Chapter 2. IBM
also provides a set of graphics characters with codes 0 to 31 and 128 to 255

To display the characters, we use a loop (lines 9 to 13). Before en-
tering the loop, AH is initialized to 2 (single-character display) and DL is set
to 0, the initial ASCII code. CX is the loop counter; it is set t0 256 before
entering the loop and is decremented after each character is dlsplayed

The instruction that controls the loop is JNZ (Jump if Not Zero). If
the result of the preceding instruction (DEC CX) is not zero, then the JNZ
instruction transfers control to the instruction at label PRINT_LOOP. When
CX finally contains 0, the program goes-on to execute the DOS return in-
structions. Figure 6.1 shows the output of the program. Of course, the ASCHI
codes of backspace, carriage return, and so on cause a control function to
be performed, rather than displaying a symbol.

Note: PRINT_LOOP is the first statement label we’ve used in a pro-
gram. Labels are needed in situations where one instruction refers to another,
as is the case here. Labels end with a colon, and to make labels stand out,
they are usually placed on a line by themselves. If so, they refer to the

instruction that follows.

JNZ is an example of a cunditional jump instruction. The syntax is

JIXXX destination_label

Figure 6.1 Output of PGM6._1

C: \BIN>pyne_L 7

Cavee
Dov 1MGgtivere Y 28S/8° (Ine, -, 7B123456789: : <=)>T@ABCDEFGHI SKLINOPORS TUUUXYZL S

~” abcdelght JkInnopqretuvuxyzCl 3~ 00t 6RAAE S AEDY § MABEMOGOID UG DVRT 1 ELIRAR LK}
""°».| 1 Har {8y Ur - HIB St ol il Mo nEosrdonseaensz2< Tl 4= I

C \BIN>

Chapter 6 Flow Control Instructions 95’

If the condition for the jump is true, the next instruction to be executed is
the one at destination_label, which may precede or follow the jump instruc-
tion itself. If the condition is false, the instruction immediately following

" the jump is done next. For JNZ, the condition is that the result of the previous
operation is not zero,

Range of a Conditional Jump

The structure of the machine code of a conditional jump requires
-that destination_label must precede the jump instruction by no more than
126 b§es, or follow it by no more than 127 bytes (we'll show how to get
around this restriction later).

How the CPU Implements a Conditional Jump

To implement a conditional jump, the CPU looks at the FLAGS reg-
ister. You already know it reflects the result of the last thing the processor
did. {f the conditions for the jump (expressed as a combination of status tag

. settings) are true; the CPU adjusts the IP to point to the destination label, -

so that the instruction at this label will be done next. If the jump condition
» Is false, then IP is not altered; this means that the next instruction in line
will be done.
In the preceding program, the CPU executes JNZ PRINT_LOOP by
. inspecting ZF. If ZF = 0, control transfers to PRINT_LOOP; if ZF = 1, the
program goes on to execute MOV AH,4CH.
Table 6.1 shows the conditional jumps. There are three categories:
(1) the signed jumps are used when a signed interpretation is being given
to results, (2) the unsigned jumps are used for an unsigned interpretation,
and (3) the single-flag jumps, which operate on settingsfof individual
flags. Note: the jump instructions themselves do not affect the flags. \
The first column of Table 6.1 gives the opcodes for the jumps. Many

of the jumps have two opcodes; for example, JG and JNLE. Both opcodes
produce the same machine code. Use of one opcode or its alternate uafE"h

determined by the context in which the jump appears.

The CMP Instruction

The jump condition is often provided by the CMP (compare) instruc-
tion. It has the form .

CMP- destination, source .

This instruction compares destination and source by computing destination
contents minus source contents. The result is not stored, but the flags are
affected. The operands of CMP may not both be memory locations. Desti-
nation may not be a constant. Note: CMP is just like SUB, except that des-
tination is not changed?)

For example, suppose a-program contains these lines:

CMP AX, BX
JG BELOW
where AX = 7FFFh, and BX = 0001. The result of CMP AX,BX is 7FFFh ~

0001h = 7FFEh. Table 6.1 shows that the jump condition for)G s satisfied,
because ZF = SF = OF = 0, so control transfers to label BELOW.

96

6.2 Conditional Jumps

Table 6.1 Conditional Jumps

Signed Jumps
Symbol

JG/NLE

JGEANL

JUINGE

JLEING

Description

jumg if greater than
jump if not less than
or equal to

jump if greater than
or equal to

jump if not less than
or equal to

jump if less than
jump if not greater than
cr equal

Conditian for Jumps
Zf = 0 and SF = OF°

SF = OF

SF <> OF

jumnp if less than or equal ZF = 1 or SF <> OF

jump if not greater than

| Unsigned Conditional Jumps

Symbol
JA/INBE

JAE/INB.
JBINAE

IBE/INA

| Single-Flag Jumps

Symbol
19574

INESINZ

IC

INC

JO

INO

)5

INS
JPHPE
INP/IPO

Description
jump it above

Condition for Jumps
(F=0and ZfF =0

jump if not below or equal

jump if above or equal
jump if not below
jump if below

jump if not above or equal

jump if equat
jump if not above

Description

yjump if equal

jump if equal to zero
jump if not equal
jump it not zero
jump if carry

jump if no carry
jump if overflow
jump if no overfiow
jump if sign negative
jump if nonnegative sign
jump tf panty even
jump if parity odd

CF=0

CF =1

CF=1or2F=1

Condition for Jumps
2F =1

F=0
CF=1
CF=0
OF =1
Of =0
SF =1
SF=0.
PF =1
PF=0

V Chapter 6 Flow Controf Instrucuons 97

ingerpreting the Conditional Jumps

In the example just given, we determined by looking at the flags
after CMP was executed that control transfers to label BELOW. This is how
the CPU implements a conditional jump. But it’s not necessary for a pro-
grammer to think about the fags; you can just use the name of the jump
to decide if control transfers to the destination label. In the following,

" CMP AX,BX
JG BELOW

if AX i§ greater than BX (in a signed sense), hen JG (jump if greater than)

transfers to BELOW.
Even though CMP is specifically ‘esigned to be used with the con-
ditional jumps, they may be preceded by other instructions, as in PGM6_1.

Another example is

DEC 2X

JL THERE

Here, if the contents of AX in a signed sense, is fess than O, control transfers
to THERE.

Signed Versus Unsigned Jumps

Each of the signed jumps corresponds to an analogous unsigned
jump; for example, the signed jump JG and the unsigned jump JA. Whether
to use a signed or unsigned jump depends on the interpretation being given.
in fact, Table 6.1 shows that these jumps operatc on different flags: the signed

‘jumps operate on ZF, SF, and OF, while the unsigned jumps operate on ZF
and CF. Using the wrong kind of jump can lead to incorrect results.

For example, suppose we're giving a signed interpretation. If AX =
7FFFh, BX = 8000h, and we execute
CMP AX,BX
JA BELOW

then even though 7FFFh > 8000h in a signed sense, the program does not jump -
to BELOW. The reason is that 7FFFh < 8000h in an unsq;ned sense, and we are
using the unsigned jump JA.

Working with Characters

In working with the standard ASCH character sct, either signed or
unsigned jumps may be used, because the sign bit of a byte containing a
character code is always zero. However, unsigned juinps should be used when
comparing extended ASCH characters (codes 80h to FIh).

?ﬂﬂple 6.1 Suppose AX and BX contain signed numbers. Write some
ode to put the biggest one in CX..@)

Solution:

MoV OX,AX ;put BRX ip TX

CWP EX,CX.. ;is BX bigger?

JLE- HNEXT ~ ;n0, 3O on

MOV CX, By ;yes, put BX in CX

NEXT:

ALEKHYA
Highlight

ALEKHYA
Sticky Note
signed: Less than, greater than
unsigned: above, below

Personal
Sticky Note
program
.TITLE prog
.MODEL SMALL
.STACK 100H
.DATA
.CODE
MAIN PROC
MOV AX,@DATA
MOV DX,AX
MOV CX,AX
CMP BX,CX
JLE NEXT
MOV CX,BX
NEXT:
MOV AH,4CH
INT 21H
MAIN ENDP
END MAIN

Bl 0.3 ihe JMP Instruction

6.3
The JMP Instruction

TheJMP Gjump) }nstmction causes an unconditional transfer of con-
trol (unconditional jump). The syntax is

JMP destination

where destination is usually a label in the same segment as the JMP itself
(see Appendix F for a more general description).

JMP can be used to get around the range restriction of a conditional
jump. For example, suppose we want to implement the following loop:

TOP:

;body of the leccyp

DEC CX ;decrement counter
JNZ TOP | ;keep looping if CX > 0
MOV AX,EX

and the loop body contains so many instructions that label TOP is out of
range for JNZ (more than 126 bytes before JMP TOP). We can do this:

TOP: .

;body of the locp

DEC CX . :decrement counter
JINZ BOTTOM skeep looping 1if CX > 0
JMP EXIT /
BOTTOM: - : -
JMP TOP
EXIT: .
MOV . AX,BX

6.4
High-Level Language
Structures

We’ve shown that the jump instructions can be used to implement
branches and Joops. However, because the jumps are so primitive, it is dif-
ficult, especially for beginning programmers, to code an algorithm with therd

without some guidelines.
Because you have probably had some experience with high-level lan-

* guage constructs—such as the IF-THEN-ELSE decision structure or WHILE

loops—we’ll show how these structures can be simulated in assembly language.
In each case, we will first express the structure in 2 high-level pseudocode.

6.4.1
Branching Structures

In high-level languages, branching structures enable a program to
take different paths, depending on conditions. In this section, we’ll look at

three structures.

IF-THEN
The 1F-THEN structure may be expressed in pseudocode as follows:

=

Chapter 6 Fiow Control Instructions

IF condition is true v; =
THEN

execute true-branch statements
END_IF
See Figure 6.2,

program goes on to whatever follows.

L]

Example 6.2 Réplace.the number in AX by its absolute value.

Solation: A pseudocode algorith

IF AX

THEN

replace AX by

-99

The condition is an expression,that is true or false. If it is true, the
true-branch statements are executed. If it is false, nothing is done, and the -

< 0

END_IF

-AX

It can be coded as follows: .

;if AX < 0

;then

END_I

F:

cMpP
JINL

NEG

AX,0
END_IF

AX

’

mis ~

/s no,

iyes,

;AX < 0?2

exit

change sign

The condition AX < 0 is expressed by CMP AX,0. If AX is not less than 0,
there is nothing to do, so we use a JNL (jump if not less) to jump around
the NEG AX. If condition AX < 0 is true, the program goes on to exccute

NEG AX.

-
LJure 6.2 IF-THEN

|

False

True-branch
statements *

Personal
Sticky Note
Program
CMP AX,0
JNL END_IF
NEG AX
END_IF:

100 6.4 -High-Level Language Structures

IF-THEN-ELSE

IF condition is'true

THEW

execute true-branch statements
ELSE

execute false-branch statements
END_IF
See Figure 6.3.

In this structure, if condition is true, the true-branch statements are
executed. If conditivn is false, the false-branch statements are done.

Example 6.3 Suppose AL and BL contain extended ASCII characters.
Display the one that comes first in the character sequence.

Solution:

IF AL <= BL

THEN
diszplay the character in AL
ELSE o
display the character in BL
END_IF
It can be coded like this:
MOV AH,2 ;prepare to dJdisplay
@ ;if AL <= BL
CMP AL,BL ;AL <= BL?
. JNBE ELSE_ ;no, display char in BL
;then ;AL <= BL
MOV DL, AL ;move char to be displayed
JMP CISPLAY ;go to display
ELSE_: ;BL < AL

MOV DL, BL

Figure 6.3 IF-THEN-ELSE

False @ True

A 4

faise-branch True-branch
statements . statements

Personal
Sticky Note
MOV AH,2
CMP AL,BL
JNBE NOT_AL
MOV DL,AL
JMP DISPLAY
NOT_AL:
MOV DL,BL
JMP DISPLAY
DISPLAY:
INT 21h

Chapter 6 Flow Control Instructions * 104

DISPLAY:
INT 21h ;display it

END_IF

) Note: the label ELSE_ is used because ELSE is a reserved word.

The condition AL <= BL is expressed by CMP AL BL. If it's false, the pro-
gram jumps around the true-branch statements to ELSE_. We use the un-
signed jump JNBE (jump if not below or equal), because we’re comparing

extended characters.
If AL <= BL is true, the true-branch statements are done. Note that

JMP DISPLAY is needed to skip the false branch. Thls is different from the
high-level language IF-THEN-ELSE, in which the false'branch statemnents are
automaucally skipped if the true-branch statements are done.

- CASE

A CASE is a multiway branch structure that tests a register, variable,
or expression for particular values or a range of values. The general form is
as follows:

CASE expression
values_l: statecments_1
values_2: statements_2

values_n: statements_n
END_CASE o . ’ .
See Figure 6.4. :
In this structure, expression is tested; if its value is a member of the set
values_i, then statements_i are executed. We assume that sets values_1,..,val-
ues_n are disjoint.

Example 6.4 If AX contains a negative number, put -1 in Bx,; if AX
contains 0, put 0 in BX; if AX contains a positive number, put 1 in BX.*

Figure 6.4 CASE

values_1 - values_2 vaiues_n

statements_1 “statements_2 statements_n

102 6.4 High-level Language Structures

Solution:

CASE AX
<0:
=0:
>0:

END_CASE

put

-1 in BX
put 0 in BX
put-1 in BX

It can be coded as follows:

;case AX
CMP
JL
JE
. JG
NEGATIVE:
[::] MOV
JMP
ZERO:
. MOV
JMP
POSITIVE:
MOV
END_CASE:

Note: only one CMP is needed, because jump instructions do not affect the

I'{ PR

Examplc 6.5 If AL contains 1 or 3, display “o”; if AL contains 2 or 4,

display “e”
Solution:
CASE AL
1,3: display ‘e’
2,4: display ‘e’
END_CRSE
The code is
;jcase AL
;1,3
CMP AL,1
JE coc
cuMp AL, 2
[:] _ JE DT
;2,4 .
SME - nL, 2
. JE EVEN
Cup RI,d
‘ JET evEN’
T JMP T END_CASE’
CDD:)
MOV DL, ‘o’
*. .JMP DISPLAY
EVEN:
MOV DL, ‘e’

DISPLAY:

AX, 0
NRGATIVE
2ERO
PSSITIVE

BX,-1
END_CASE

BX, 0
END_CASE

EY, 1

AL =

;test ax

;AX < 0

;AX = 0

;AX > 0

;put -1 in BX
;and exit
;put 0 in BX
;and exit
;jput 1 in BX

1?2

display
vy

display

;AL =
iyes,
tAL =
iyes,

;AL =
;yes,

2?
display
4?

;yes, display-

snot 1..4

;display ‘o’
;get ‘o

;go .to display
;display ‘e’
;get ‘e’

Personal
Sticky Note
CMP AX,0
JL NEGATIVE
JE ZERO
JG POSITIVE
NEGATIVE:
MOV BX,-1
JMP END_CASE
ZERO:
MOV BX,0
JMP END_CASEPOSITIVE:
MOV BX,1
JMP END_CASE
END_CASE:
MOV AX,4CH
INT 21h
MAIN ENDP
END MAIN

Personal
Sticky Note
CMP AL,1
JE ODD
CMP AL,3
JE ODD
CMP AL,2
JE EVEN
CMP AL,4
JE EVEN
ODD:
MOV DL,'o'
JMP DISPLAY
EVEN:
MOV DL,'e'
JMP DISPLAY:
DISPLAY:
MOV AH,2
INT 21h

=]

Chapter 6 Flow Control Instructions 103

.t

MOV AH, 2 '
INT 21H -7+ :display char
END_CASE:-
o
Branches with Compound Conditions
Sometimes the branching condition in an IF or CASE takes the form
condition’ 1' AND coadition 2- ‘
or
cbnditior'm 1 .Or.condition_2

"where condmon 1 and condmon 2 are either true or false. We will refer to the
first of these as'an AND condition and to the second as an OR condition.

’ AND__ Conditions

An AND condition is true if and only if condition_1 and condition_2
are both true. Likewise, if either condition is false, then the whole thir. g 1s false.

Evample 6.6 Read a character, and if it's an uppercase letter, display it.

+ Solution:

Read a character (into AL)

IF ('A’ <= character) and I(character <= ‘Z')
THEN :
display character
END_IF ’

To code this, we first see if the character in Al follows “A" (or is “A”) in the .
character sequence. If not, we can exit. If so, we still inust see if the character
precedes “2” (or is “Z") before displaying it. Here is the code:

;read a chavacter

IV AR, 1 ,pr:pa e read
INT 21H ;jchar in i-.L

;if (CAC <= char) and (char <= ‘'2')
CMP AL, * ;chax >= ‘A"'7?
JHGE END_IF ‘ino, erit
c#pP AL, ‘2’ ;char <= *'2'?
CKLE "END:IF ;NO, €xit

;then display char

- ' MOV DL, AL- ;jget char

14V AH, 2 iprepare to display
INT- 21H . sdisplay char

END_IF:) .

OR Conditions

o Condition_1 OR condition_2 is true if at least one of the conditions
is true; it is only false when both conditions are false.

.
. L

+ Example 6.7 Read a character. If it's “y” or “Y”, display it; otherwise,
.-terminate the program. - :

Personal
Sticky Note
MOV AH,1
INT 21H
CMP AL,'A'
JNGE NOT
CMP AL,'Z'
JNLE NOT
MOV DL,AL
MOV AH,2
INT 21h
NOT:

104 64 High‘-l.evé/ Language Structures

Solution:

Read a character (into AL)
IF (character = ‘y’) OR (character = ‘Y’)
THEN
display it
ELSE]
terminate the >program
END_IF

To code this, we first see if character = “y”. If so, the OR condition is true
and we can execute the THEN statements. If not, there is still a chance

.the OR condition will be true. If character = “Y”, it will te true, and we

execute the THEN statements; if not, the OR condition is false and we dm
the ELSE statements. Here is the che

;read a character

MOV AH,1 ;prepare to read -
INT 21H schar in AL
;if (character = ‘y’) or ‘(character = ‘Y’)
cMP AL, ‘y’ ijchar = ‘y'?
JE THEN ;yes, go to display it
CMP AL, ‘Y’ ;char = ‘'Y'?
JE THEN ;yes, go to display it
JMP ELSE_ ino, terminate
TYEN:
MOV AH, 2 ;prepare to display
MOV CL,AL ;:get char
INT 21K sdisplay it
JMP END_IF sand exit
ELSE_ .
MOV AH,4CH
INT 21H ;DOS exit
END_IF:

6.4.2
Looping Structure:

A loop is a sequence of instructions that is repeated. The numbeY
of times to repeat may be known in advance, or it may depend on conditions

FOR LOOP
This is a loop structure in which the loop statements are repeated a
known number of times (a count-controlled loop). In pseudocode,
FOR locp count times DO
statements
END _FOR

See Figure 6.5.
‘The LOOP mslructuon can be used to implement a FOR loop. It has

the form
LOOP destination_label

The counter for the loop is the register CX which is initialized to loop_count.
Execution of the LOOP instruction causes CX to be decremented automatically,

Personal
Sticky Note
MOV AH,1
INT 21H
CMP AL,'y'
JE THEN
CMP AL,'Y'
JE THEN
JMP ELSE
THEN:
MOV AH,2
MOV DL,AL
INT 21H
JMP EXIT
ELSE:
JMP EXIT
EXIT:

Chapter 6 Flow Control Instructions 10!

Figure 6.5 FOR LOOP

Initialize
count

Statements

count = count - 1

True

“g:lliij’. False

and if CX is not 0, control transfers to destination_label. If CX = 0, the niext
instruction after LOOP is done. Destination_label must precede the LOOP
instruction by no more than 126 bytes.

Using the instruction LOOP, a FOR loop can be implemented as

follows:

;jinitialize CX to loop_count

TOP:

;body of the loop
LOOP TOP

Example 6.8 Write a count-controlled loop to display a row of 80 stars.

Solution:

FOR 80 times DO

display *‘*’

END_FOR
The code is
MOV
MOV
MoV
- TCP:
) INT
Loop

CX, 80 ;number of stars to display
AH, 2 ;display characteér function
DL, '+’ ;character to.display

21h ;display a star '

'1‘013 ;repear 30 times

You may have noticed that a FOR loop, as impiémented with z LOOP in-

struction, is executed at least once. Actually, if CX contains 0 when the loop
is entered, the LOOP instruction causes CX to be decremented to FFFFn, and

Personal
Sticky Note
MOV CX,80
MOV AH,2
MOV DL,'*'
TOP:
INT 21h
DEC CX
JCXZ DONE
JMP TOP

106 6.4 High-Level Language Structures

the loop is then executed FFFFh = 65535 more times! To prevent this, the
struction JCXZ (jump if CX is zero) may be used before the loop. Its syntax

JCcxz destination_label

If CX contains 0, control transfers to the destination label. So a loop i
plemented as follows is bypassed if CX is O:

JCX2 SKIP

TOP:
;body of the loop
LOOP TOP
SKIP: -
WHILE LOOP

This loop depends on a condition. In pseudocode,

WHILE condition DO
statements
END_WHILE

See Figure 6.6.

The condition is checked at the top of the loop. If true, the stat ments -
executed; if false, the program goes on to whatever follows. It is p »ssible '
the condition will be false initially, in which case the loop body is n t execu ¢
at all. The loop executes as long as the condition is true.

Example 6.9 Write some code to count the number of chara ters in . n
input line.

Solution:

initialize count to 0

read a character

WHILE character <> carriage_return DO
count = count + 1

read a character

END_WHILE

Figure 6.6 WHILE LOOP

Statements

The code is

WHILE_

LIRS

. END_WHILE::

MOV
MOV
INT

cMpP
JE

INC
INT

JMmp’

v

-, -Chapter 6 Flow Control Instructions 107

DX, 0
AH,1
21H

‘AL, ODH

¢:DX counts characters
;prepare to read
;character in AL

'

:CR?

END_WHILE ;yes, exit

DX
21“\‘.

WHILE

;not CR, increment count
sread a ch?racter
;loop back:

Note that because a WHILE loop checks the terminating condition at the
" top of the loop, you must make sure that any variables involved in the
conamon are initialized befofe the loop is entered. So vou read a charac-
ter before éntering the loop, and read another one at the bottom. The la-
bcl WHILE_: is used because WHILE is a reserved word. *

oy . '

PR

REPEAT LOOP _
Another conditional loop is the REPEAT LOOP. In pseudocode,

REPEAT
statements

UNTIL condition

See Figure 6.7.

In a REPEAT . ..

'UNTIL‘loop, the statements are exccuted, and then

-the condition is checked. If true, the loop terminates; if false, control branches
- to thetop of the loop. *

Lt

Example 6.10 Write some code to read characters until a blank is read.

Solution:

REPEAT
read a charac

ter

UNTIL character 3

s a blank

Figure 6.7 ‘REPEAT.LOOP

.
<
y

-Statements .

Personal
Sticky Note
MOV DX,0
MOV AH,1
INT 21H
WHILE_:
CMP AL,0DH
JE END_WHILE
INC DX
INT 21H
JMP WHILE
END_WHILE:

108 6.5 Programming with High-Level Structures

The code is

MOV AH,1 ;prepare to read
REPEAT: :

INT 21H ;char in AL

suntil
' CMP AL, ‘' ' ;a blank?
JNE REPEAT ;no, keep reading

WHILE Versus REPEA]

In many situations where a conditional loop is needed, use of a
WHILE loop or a REPEAT loop is a matter of personal preference. The ad-
vantage of a WHILE is that the loop can be bypassed if the terminating,
tondition is initially false, whereas the statements in a REPEAT must be done

. at least once. However, the code for a REPEAT loop is likely to be a little

shorter because there is only a conditional jump at the end, but a WHILE
loop has two jumps: a conditional jump at the top and a JMP at the bottom,

6.5
Programming
with High-Level
Structures

To show how a program may be developed from high-level pseudo-
code to assembly code, let’s solve the following problem.

Problem

Prompt the user to enter a line of text. On the next line, display the
capital letter entered that comes first alphabetically and the one that comes
last. If no capital letters are entered, display “No capital letters”. The execu-
tion should look like this:

Type a ling of text:
THE QUICK BROWN FOX JUMPED.
First capital = B Last capitali = X

To solve this problem, we will use the method of top-down program
design that you may have encountered in high-level language program-
ming. In this method, the original problem is solved by solving a series of
subproblems, each of which is easier to solve than the original problem. Each
subproblem is in turn broken down further until we reach a leve! of sub-
problems that can be coded directly. The use of procedures (Chapter 8) may
enhance this method.

First refinement
1. Display-the opening message.
2. Read and process a line of text.
3. Display the results. -

Personal
Sticky Note
MOV AH,1
REPEAT:
INT 21h
CMP AL,' '
JNE REPEAT

« . Chapter 6. Flow Control Instructions 109

Step 1. Display the opening message.

This step can be coded immediately

MOV AH, 9 ! ;display string function
LEA DX,PROMPT ~° ;get opening message
INT 21H ;display it

The message will be stored in the data segment as
PROMPT DB ‘Type a line of text:’,O0DH, OAH, ‘'S

We include a carriage return and line feed to move the cursor to the next
“line so the user can type a full line of text.

Step 2. Read and proceéss a line of text.

This step does most of the work in the program. It takes input from
the keyboard, and returns the first and last capital letters read (it should also
. ind;cate if no capitals were read). Here is a breakdown:

Read a characcer) ' ;
WHILE character is not a carrxage return DO
IF character is a capltal letter (*)
THEN
IF character précedes first capital
THEN
first capital = character
END_IF
IF character follows last capital
THEN
last capital = character
END_IF ‘
END_IF
Read a character
END_WHILE

Line (*) is actually an AND condition:
IF (‘A’ <= character) AND (character <= ‘'2')
Step 2 can be coded as follows:

MOV AH, 1 ;read char function
INT 21H . schar in AL

WHILE_: . :

;while character ic not a carriage return do
CMP AL, ODH ;CR?

JE END_WHILE ;yes, exit .
;if character is a capital letter

CMP AL, ‘A’ ;char >= ‘aA’'?

JNGE END_1F ;not a capital letter

CMP AL, ‘2’ ;char <= ‘Z2'?

JNLE END_IF ;not a capital letter
sthen
; if character precedes first capital
CMP AL,FIRST ;char < FIRST?
JNL CHECK_LAST ;no, »>=
;then first capital = character
) MOV FIRST,AL ;FIRST = char
; end if -
CHECK_LAST:

Personal
Sticky Note
Step1
.DATA
PROMPT DB 'Type a line of text:',0DH,0AH,'$'
.CODE
MOV AH,9
MOV DX,PROMPT
INT 21H

Personal
Sticky Note
.DATA
FIRST DB ']'
LAST DB '@'
MOV AH,1
INT 21H
WHILE_:
CMP AL,0DH
JE END_WHILE
CMP AL,'A'
JNGE NOT_CAPITAL
CMP AL,'Z'
JNLE NOT_CAPITAL
CMP AL,FIRST
JNL CHECK_LAST
MOV FIRST,AL
CHECK_LAST:
CMP AL,LAST
JNG NOCHANGE_LAST
MOV LAST,AL
NOCHANGE_LAST:
INT 21H
JMP WHHILE_

110 6.5 Programming with High-Level Structures

.:; "if character follows last capital

CMP AL,LAST ;char > LAST?
“ JNG END_IF sno, <=
;then last capital = character

MOV LAST,AL ;LAST = char

; end_if
END_IF:
;read a characte.
INT 21H ;char in AL
JMP WHILE_ ;repeat loop
END_WHILE:

Variables FIRST and LAST must have values before the WHILE loop is
executed the first time. They can be initialized in the data segment as follows:

FIRST _ DB ‘i

LAST . DB ‘e

The initial values “])” and “@” were chosen because “}J” follows “Z” in the
ASCII sequence, and “@” precedes “A”. Thus the first capital entered will

replace both of these values.
With step 2 coded, we can proceed to the final step.

Step 3. Display the results.

I¥ no capitals were typed,
THEN
display "“No capitals”
CLSE
display first capital and last capital
END_IF
This step will display one of two possible messages; NOCAP_MSG if

no capitals are entered, and CAP_MSG if there are capitals. We can declare
them in the data segment as follows:

NCCAP_MSG DB *‘No capitals $’
CAP_MSG i ‘First capital = '
FIRST cB A

OB * lLast capital = '
LAST OB - ‘e s’

When CAP_MSG is displayed, it will display “First capital =", then the value
of FIRST, then “Last capital =", then the value of LAST. We used this same
technique in the last program of Chapter 4.
The program decides, by inspecting FIRST, whether any capitals were
read. If FIRST contains its initial value “}”, then no capitals were read.
Step 3 may be coded as follows:

MOV AH,S ;display string function
;1€ no capitals were typed
CMP FIRST, ')’ ;FIRST = ‘'}’?
JNE CAPS ;no, display results
;then
LEA DX,NOCAP_MsG
JMP DISPLAY
CAPS:
: "LEA DX,CAP_MSG
DISPLAY:

INT 21H ;display message
;end_if -

Chapter 6 Flow Control Instructions 11

‘Here is the complete program:

* Program Listing PGM6_2.ASM

TITLE PGM6_2: FIRST AND LAST CAFITALS
.MODEL SMALL

.STACK 100H

.DATA
- PROMPT DB 'Type a line of text',ODH,OAH,’S’
NPCAP_MSG DB ODH, CAH, ‘Mo capitals §’

. CAP_MSG B - © CCH,0AH, First caepital =
FIRST DB BN -

DB ‘ Last capital = *

LAST DB MR-

.CODE

MAIN PROC

;initialize DS
MOV AX, @DATA

MOV DS, AX
;display opening message
MOV, _AH, 9 ~ sdisplay string function
.LEA: DX, PROMPT. . :get opening message
CINT 21H sdisplay it
iread and process a line of text
MOV AH,1 ;readd char function
INT 21H ;char in AL
WHILE_! " ' '
;while character is not a carriage return do
CMP: AL, ODH - ;CR? h
. © =JE - END_WHILE _iyes, exit
;if character is a capital letter
CMP AL,'A’ ‘;char >= ‘A’?
JNGE END_IF ;not a capital letter
CMP AL,‘’Z’ ;char <= '2'?
JNLE END, IF inot a capital letter
;then s
. 71f character precedes first capital
CMP - AL,FIRST .. ;char < first capital?
JNL CHECK_LAST ;/no, >=

; ' then first capital ‘= character .

MOV FIRST,AL '* ~;FIRST = char

;end_if
CHECK_LAST:
;" if character followshlést capital
CMP _ AL, LAST ;char > last capital?
.. JNG END_IF " ‘ino, <=
; 'then "last"capital ‘character
<t MOV’ LAST,AL " ;LAST = char

;i end_if .
END_IF:
;read 'a character . .

- INT 21H . schar in AL

- . JMP WHILE_ _;repeat loop
END_WHILE:

:display results

112

Summary

;sthen

MOV AH,9 ¢ ;display string function
";if no capitals were typed

CMP FIRST,’])’ s first = *)’

JNE CAPS ;no, display recsults

LEA DX,NNCAP_MSG ;no capitals
JMP DISPLAY

CAPS: :

LEA DX, CAP_MSG ;capitals
DISPLAY:

INT 21H ;display message
send_if

;dos exit

MOV AH, 4CH

INT 21H
MAIN ENDP

END MAIN
Summary

The jump instructions may be divided into unconditional and
conditional jumps. The conditional jumps may be classified as
signed, unsigned, and single-flag jumps.

The conditional jumps operate on the settings of the status flags.
The CMP (compare) instruction is often used to set the flags just
before a jump instruction.

The destination label of a conditional jump must be less than
126 bytes before or 127 bytes after the jump. A JMP can often be
used to get around this restriction.

In an IF-THEN decision structure, if the test condition is truc,
then the true-branch statements are done; otherwise, the next
statement in line is done.

In an IF-THEN-ELSE decision structure, if the test condition is
true, then the true-branch statements are done; otherwise the
false-branch statements are done. A JMP must follow the true-
branch statements so that the false-branch will be bypassed.

In a CASE structure, branching is controlléq by an expression; the
branches correspond to the possible values of the expression.

A FOR loop is exccuted a known number of times. It may be im-
plemented by the LOOP instruction. Before entering the loop, CX
is initialized to the number of times to repeat the loop statements.

In a WHILE loop, the loop condition is checked at the top of the
loop. The loop statéments are repeated as long as the condition is
true. If the condition is initially false, the loop statements are not
done at all.

In a REPEAT loop, the loop condition is checked at the bottom of
the loop. The statements are repeated until the condition is true.

" Because the condition is checked at the buttom of the loop, the

statements are done at least once.

Chapter 6 Flow Control Instructions - 113

Glossary
AND condition

conditional jump
instruction

Ioop
OR condition
signed jump

single-flag jump
top-down program design

unconditional jump
unsigned jump

A logical AND of two conditions

A jump instruction whose execution
depends on status flag settings

A sequence of instructions that is répeated

- A logical OR of two conditions

A conditjonal jump instruction used with
signed numbers

A conditional jump that operates on the
setting of an individual status flag

Program development by breaking a large
problem into a series of smaller problems

An unconditional transfer of control

A conditional jump instruction used with
unsigned numbers

New Instructions

cMmp JCX2 JLE/JING
JA/JNBE JE/JZ JMP
JAE/JNB JG/JNLE JNC
JB/JNAE JGE/JNL JNE/JINZ
JBE/JNA JL/JNLE Loop

JC

Exer;_ises

1. Write assembiy ._coqé fbr gaéh of the following decision structures.

a. IF AX < 0
THEN

PUT -1 IN BX

_ END_IF

b. IF AL < 0

THEN
put FFh in AW
ELSE
. put 0 in AH
_END_IF ,

< Suppbse. DL contains the ASCII code of a character.

(IF DL >= “A~)
THEN

display DL
END_IF

d. IF AX < BX
THEN ° ;
IF BX < CX
THEN

AND (DL <= ‘z*)

114

. Exercises.

put 0 in AX.

ELSE e
put O in BX
END_IF "7
* END_IF

‘e. IF (AX. < BX) OR (BX < CX)

THEN .
put 0 ‘in DX
ELSE ’
put 1 in DX |
END_IF °

f. IF AX < BX
THEN '
put 0°in }}x .
ELSE '
IF BY < CX°
THEN
put 0 in BX
ELSE
put ‘0 ‘in CX -
END_IF
END_IF

- Use a CASE structure to code the following:

Read a character.
If it’s “A”, then execute carriage return.
If it’s “B”, then execute line feed.

- If it's any other character, then return to DOS.

Wirite a sequence of instructions to do each of the following:

a. Pitthesum 1 +4+7+...+ 148 in AX.

b. Put the sum 100+ 95+ 90+...+ 5in AX.

Employ LOOP instructions to do the following:

a. put the sum of the first 50 terms of the arithmetic sequence
1,5,9,13,...in DX.

b. Read a character and display it 80 times on the next line.

. Read a five:character password and overprint it by executing
a carriage return and displaying five X's. You need not store
the input characters anywhere.

The following algorithm may be used to carry out division of two

nonnegative numbers by repeated subtraction:

initialize quotient to 0
WHILE dividend >= divisor DO

increment quotient
subtract divisor from dividend

END_WHILE
Write a sequence of instructions to divide AX by BX, and put the
quotient in CX.

1

Chapter 6 Flow Control Instructions 115

6. The following algorithm may be used to carry out multiplication
of two positive numbers M and N by repeated additton:"

init_ialize product to 0
REPEAT ' N

add M to product
decrement N

UNTIL N = O

Wirite a sequence of instructions to multiply AX by BX, and put
the product in CX. You may ignore the possibility of overflow.

7. 1t is possible to set up a count-controlled loop that will continue
to execute as long as some condition is satisfied. The instructions

LOOPE label :loop while equal
and
" LOOPZ label ;loop while zero

cause CX to be decremented, then if CX <> 0 and ZF = 1, control
transfers to the instruction at the destination label; if either CX =
0 or ZF = 0, the instruction following the loop is done. Similarly,
the instructions

LOOPNE label :loop while not equal
and
LOOPNZ label ;loop while not zero

cause CX to be decremented, then if CX <> 0 and ZF = 0, control

transfers to the instruction at the destination label; if either CX =

0 or ZF = 1, the Instruction following the loop is done.

a. Write instructions to read characters until either a nonblank
character is typed, or 80 characters have been typed. Use
LOOPE.

b. Write instructions to read characters until either a carriage re-
turn is typed or 80 characters have been typed. Use LOOPNE.

Programming Exercises

8. Write a program to display a “?”, read two capital letters, and dis-
play them on the next line in alphabetical order.
9. Write a program to display the extended ASCI! characters (ASCII

codes 80h to FFh). Display 10 characters per line, separated by
blanks. Stop after the extended characters have been displayed

once.
10. Write a program that will prompt the user to enter a hex digit
character (“0"-...“9” or "A" ... “F”), display it on the next line

in decimal, and ask the user ix he or she wants to do it again. If
the user types “y” or “Y”, the program repeats; if the user types
anything else, the program terminates. If the user enters an illegal
character, prompt the user to try again,

Sample execution: ~

116

Programming Exercises

11.

12.

ENTER A HEX DIGIT: 9

IN DECIMAL IS IT 9

DO YOU WANT TO DO IT AGAIN? y

ENTER A HEX DIGIT: c ‘

ILLEGAL CHARACTER - ENTER 0..9 OR A..F: C

IN DECIMAL IT IS 12

DO YOU WANT TO DO IT AGAIN? N

Do programming exercise 10, except that if the user fails to enter
a hex-digit character in three tries, display a message and termi-
nate the program.

(hard) Write a program that reads a string of capital letters, end-

" ing with a carriage return, and displays the longest sequence of

consecutive alphabetically mcreasmg capital letters read.
Sample exccution:

ENTER A STRING OF CAPITAL LETTERS:

FGHADEFGHC
THE LONGEST CONSE”UTIVELY INCREASING STRING IS:

DEFGH

| 'Lo'gic,, Shift, and -
Rotate Instructions

Overview

In this chapter we discuss instructions that can be used to change
the bit pattern in a byte or word. The ability to manipulate bits is generally
absent in high-level languages (except C), and is an important reason for
programming in assembly languages v

In section 7.1, we introduce the logic instructions AND, OR, XOR,
and NOT. They can be used to clear, set, and examine bits in a register or
variable. We use these instructions to do some familiar tasks, such as con-
verting a lowercase letter to upper case, and some new tasks, such as.deter-
mining if a register contains an even or odd number.)

Section 7.2 covers the shift instructions. Bits can be shifted left or
right in a register or memory location; when a bit is shifted out, it goes into
CF. Because a left shift doubles a number and a right shift halves it, these
instructions give us a way to multiply and divide by powers of 2. In Chapter
9, we’ll use the MUL and DIV instructions for doing more general multipli-
cation and division; howevey, these latter instructions are much slower than
the shift instructions.- - o . o

In section 7.3, the rotate instructions are covered. They work like
the shifts, except that when a bit is shifted cut one end of an operzud it is
put back in the other end. These instructions can be used in situation< where
we want to examine and/or change bits or groups of bits. .

In section 7.4, we use the logic, shift, and rotate instructions to do

binary and hexadecimal 1/O. The ability to read and write numbers iets us
solve a great variety of problems. -

117

118 7.1 logic Instructions

74 7
Logic Instructions

As noted earlier, the ability to manipulate individual bits is on
the advantages of assembly language. We can change individual bits in
computer by using logic operations. The binary values of 0 and 1 are tre:
as false and true, respectively. Figure 7.1 shows the truth tables for the I
operators AND, OR, XOR (exclusive OR), and NOT.

When a logic operation is applied to 8- or 16-bit operands, the re
is obtained by applying the logic operation at each bit position.

Example 7.1 Perform the following logic operations:

16101010 AND 11110000
10101010 OR* 11110000
10101010 XOR 11110000
NOT 10101010

Ll o\

Solutions:

1. 10101010
AND 11110000

= 10100000

2. 10101010
OR 11110000

=11111010

3. 10101010
XOR 11110000

=01011010

4. NOT 10101010
=01010101

Figure 7.1 Truth Tables for
AND, OR, XOR, and NOT
(0 = false, 1 = true)

a b aAND b aORb a XOR b
0 0 0 0 0

0 1 0 1 j‘

1 0 0 1 1
10 1 1 0

a NOT;

0 1

Chapter 7 Logic, Shift, and Rotate Instnictions 119

7.11
AND, OR, and XOR
Instructions

The AND, OR, and XOR instructions perform the named logic op-
erations. The formats are

AND destination,source

- .OR - destination,source -

XOR destination,source

The re;ult:of the operation-is stored in the destination, which must be a
register or memory location. The source may be a constant, register, or mem-

ory location. However, memory-to-memory operations are not allowed.
. . \

Effect on ﬂags .
. SF, ZF, PF reﬂect the result
- AF is undefined

CE OF=0

" One use of AND OR,"and XOR is to selectively modify the bits ir:’

" the destination. To do this, we construct a source bit pattern known as ¢

mask. The mask bits are chosen so that the corresponding destination bits

" are modified in the desired manner when the instruction is executea.

To choose the mask bits, we make use of the following properties of
AND, OR, and XOR. From Figure 7.1, if b represents a bit (0 or 1)

bAND1=b bORO=b bXORO=b
bANDO=0 bOR1=1 b XOR 1 = ~b (complement of b)
From these, we may conclude that _

1. The AND instruction can be used to clear specific destination
bits while preserving the others. A 0 mask bit clears the corre-
sponding destination bit; a 1 mask bit preserves the correspond-

. ing destination bit.

2.” The OR instruction can be used to set specific destination bits
while preserving the others. A 1 mask bit scts the corresponding
‘destination bit; a 0 mask bit preserves the corresponding destina-
tion bit. ©~ . . .

3. The XOR instruction can be used to complement specific desti-

" nation bits while preserving the others. A 1 mask bit comple-

.. ments the corresponding destination bit; a 0 mask bit preserves
the corresponding destination bit.

Example 7.2 Clear the Sign bit of AL while leaving the other bits un-

_changed.

..Solution: Use the AND instruction.with 01111111b = 7Fh as the mask.

Thus,
AND AL,7Fh

Example 7.3 Set the most significant and least significant bits of AL
while preserving the other bits.

Personal
Highlight

Personal
Highlight

120

7.1 Logic Instructions

Solution: Use the OR instruction with 10000001b = 81h as the mask..
Thus,

OR AL,81h
Example 7.4 Change the sign bit of DX.
Solution: Use the XOR instruction with a mask of 8000l. Thus,

XOR DX, 8000h

Note: to avoid typing errors, it's best to express the mask in hex rather thap
binary, especially if the mask would be 1p bits long.

The logic instructions are espe ally useful in the followmg fre-
quently occurring tasks.

Converting an ASCIl Digit to a Number
We've seen that when a program reads a character from the keyboard,

. AL gets the ASCII code of the character. This is also true of digit characters.

For éxample, if the “5” key is pressed AL gets 35h instead of 5. To get 5 in
AL, we could do this:

18] -3 AL, 30h

Another method is to use the AND instruction to ciear the high
nibble (high four bits) of AL:

AND AL, OFh

Because the codes of “0” to “9” are 30h to 39h, this method will convert
any ASCII digit to a decimal value.

By using the logic instruction AND instead of SUB, we emphasize
that we're modifying the bit pattern of AL. This is helpful in making the
program more readable.

The reverse problem of converting a stored decimal digit to its ASCII
code-is left as an exercise.

, Converting a Lowercase Letter to Upper Case

" The ASCII codes of “a” to “z” range from 61h to 7Ah; the codes of
“A” to “Z" go from 41h to 5Ah. Thus for example, if DL contains the code
of a lowercase letter, we could convert to upper case by executing '

SUB DL, 20h

This method was used in Chapter 4. However, if we compare the binary
codes of corresponding lowercase and uppercase letters

Character Code Character Code
a 01100001 A 01000001

b N 01100010 B 01000010

01111010 z 01011010

Personal
Highlight

Personal
Highlight

Chapter 7 Logic, Shift, and Rotate Instructions 121

it is apparent that to convert lower to upper case we need only clear bit §.
This can be done by using an AND instruction with the mask 11011111b,
or ODFh. So if the lowercase character to be converted is in DL, execute

AND DL, ODFh

The reverse problem of conversion from upper to lower case is left as an
exerciseé.

Clearing a Register

' We already know two ways to clear a register. For example, to clear
AX we could execute

MOV AX,0

or

SUB AX,AX

Using the fact that 1 XOR 1 = 0 anu 0 XOR 0 = 0, a third way is
XOR AX, AX

The machine code of the first method is three bytes, versus two bytes for
the latter two methods, so the latter are more efficient. However, because of
the prohibition on memory-to-memory operations, the first method must

- be used to clear a memory location.

Testing a Register for Zero

Because 1 OR 1 =1, 0 OR 0 = 0, it might seem like a waste of time
to execute an instruction like .

OR CX,CX

because it leaves the contents of CX unchanged. However, it affects ZF and
SF, and in particular if CX contains 0 then ZF = 1. So it can be used as an
alternative to

cMP CX,0

to test the contents of a register for zero, or to check the sign of the contents.

7.1.2
NOT Instruction

The NOT instruction performs the one’s complement operation on
the destination. The format is

NOT destination
There is no effect on the status flags.

Example 7.8 Complement the bits in AX.

Solution:
NOT AX

123 7.2 Shift Instructions

7.4.3
TEST Instruction

The TEST instruction perfétms an AND operation of the destination
with the source but does not change the destination contents. The purpose
of the TEST instruction is to set the status flags. The format is

TEST destination, source

Effect on flags
SF, ZE, PF reflect the result .
AF is undefined
CF,OF=0

Examining Bits

The TEST instruction can be used to examine individual bits in an
operand. The mask should contain 1’s in the bit positions to be tested and
0's elsewhere. Because 1 AND b =b, 0 AND b = 0, the result of '

TEST'destination,maék

will have 1’s in the tested bit positions if and only if the destination has 1's
in these positions; it will have O’s elsewhere. If destination has O’s in all the
tested position, the result will be 0 and so ZF = 1.

Example 7.6 Jump to label BELOW if AL contains an even number.

Solution: Even numbers have a 0 in bit 0. Thus, the mask is 00000001b
= 1. ’

TEST AL,1 +is AL even?
Jz BELOW ;yes, go to BELOW

7.2
Shift Instructions

The shift and rotate instructions shift the bits in the destination operang
by one or more positions either to the left or right. For a shift instruction, the
bits shifted out are lost; for a rotate instruction, bits shifted out from one end
of the operand are put back into the other end. The instructions have two
possible formats. For a single shift or rotate, the forn is

Opcode destination,l
For a shift or rotate of N positions, the form is
Opcode destination,CL

where CL contains N. In both cases, destination is an 8- or 16-bit register or
memory location. Note that for Intel’s more advanced processors, a shift or
rotate instruction also allows the use of an 8-bit constant.

As we'll see presently, these instructions can be used to multiply and
divide by powers of 2, and we will use them in programs for binary and hex I/O.

Chapter 7 logic, Shift, and Rotate Inistructions 123"

7.2. 1 .
Left Shift lnstruct:ons

The SHL Instruction

The SHL (shift left) instruction shifts the bits in the destination to
the left. The format for a single shift is
SHL destination, 1

A 0 is shifted into the rightmost bit position and the msb is shifted
into CF (Figure 7.2). If the shift count N is different from 1, the instruction

takes the form
SHL destination,CL

where CL contains N. In this case, N single feft shifts are made. The value
of CL remains the same after the shift operation.

Effect on fiags
SE, PF, ZF reflect the result
AF is undefined
= " CF < last bit shifted out
' OF = 1 if tesult changes sign on last shift

Example 7.7 Suppose DH contains 8Ah and CL contains 3. What are
the values of DH and of CF after the instruction SHL DH,CL is executed?

Solution: The binary value of DH is 10001010. After 3 left shifts, CF
will contain 0. The new contents of DH may be obtained by erasing the
leftmost three bits and adding three zero bits to the right end, thus
01010000b = S0h.

Multiplication by Left Shift

Consider the decimal number 235. If each digit is shifted left one
position and a 0 attached to the nght end, we get 2350; this is the same as
multiplying 235 by ten.

Figure 7.2 SHL and SAL

D‘—_{iiiiiiiiil:‘ﬁ?ﬁ?—]w—o

1S 14 13 ‘12 1 10 9 8 7
. Word

“DWO
T ocr 7 6 5 4 3 2 1 0

Byte

Personal
Highlight

Personal
Highlight

Personal
Highlight

124 7.2 Shift Instructions

in the same way, a left shift on a binary number multiplies it by 2.
For example, suppose that AL contains 5§ = 00000101b. A left shift gives
00001010b = 10d, thus doubling its value. Another left shift yields 00010100
= 20d, so it Is doubled again.)

The SAL instruction |

Thus, the SHL instruction can be used to multiply an operand by
muftiples of 2. However, to emphasize the arithmetic nature of the operation
the opcode SAL (shift arithmetic left) is often used in instances where nu
meric multiplication is intended. Both instructions generate the same ma
chine code.

Negative numbers can also be multip. ¥ powers of 2 by left shifts
For example, if AX is FFFFh (-1), then shiftii., iree times will yield AX -
FFF8h (-8).

Overflow

When we treat left shifts as multiplication, overflow may occur. Fot
a single left shift, CF and OF accurately indicate unsigned and signed over-
flow, respectively. However, the overflow flags are not reliable indicators for
a multiple left shift. This is because a multiple shift is really a series of single
shifts, and CF, CF only reflect the result of the last shift. For example, if BL
contains 80h, CL contains 2 and we execute SHL BL,CL, then CF = OF =0
even though both signed and unsigned overflow occur. '

Example 7.8 Write some code to muitiply the value of AX by 8.
Assume that overflow will not occur.

Solution: To multiply by 8, we need to do three left shifts.

Mov CL,3 ;number of shifts to do
SAL AX,CL ;multiply by 8

Figure 7.3 SHR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0' CF
Word
7 6 5 4 3 2 1+ 0O CF
Byte J
7

Personal
Highlight

Personal
Sticky Note
MOV CL,3
SAL AX,CL

S

Chapter 7 Logic. Shift, and Rotate Instructions 125

~

;.2.2 . .
Right Shift Instructions

The SHR Instruction

The instruction SHR (shift right) performs right shifts on the desti-
nation operand. The format for a single shift is
snn feaddd Anatingmg, i

A 0 1s shifted into the msb position, and the rightmost bit is shifted
“into CF. See Figure 7.3. If the shift count N is different from 1, the instruction
takes the form

SHR destination,CL

" where CL contains N. In this case N single right shifts are made.

The effect on the flags is the same as for SHL.

Example 7.9 Suppose DH contains 8Ah and CL contains 2..What are the
values of DH and CF after the instruction SHR DH,CL is executed?

Solution: The value of DH in binary is 10001010. After two right shifts, CF
= 1. The new value of DH is obtained by erasing the rightinost two bits and
adding two 0 bits to the left end, thus DH = 00100010b = 22h.

The SAR Instruction ~

The SAR instruction (shift arithmetic right) opefates like SHR, with
one difference: the msb retains its original value. See Figure 7.4. The syntax is

,SAR destination,l

and
SAR destination,CL

The effect on flags is the same as for SHR.

Division by Right Shift
Because a left shift doubles the destination’s value, it’s feasonable to
guess that a right shift might divide it by 2. This is correct for even numbers.

Fiqure 7.4 SAR

15 14 .13 12 11:10-9 8 7 .6 5 4 3-2 1 0 CF
Word
7 6 5 4 3 2 1.0 CF

Byte

126 7.2 Shift Instructions

For odd numbers, a right shift halves it and rounds down to the nearest ~
integer. For example, if BL contains 00000101b 5, then after a nght shift,
BL will contain 00000010 = 2. I .

Signed and Unsigned Division

In doing division by right shifts, we need to make a distinction
between signed and unsigned numbers. If an unsigned interpretation is being
given, SHR should be used. For a signed interpretation, SAR must be used,
because it preserves the sign.

Example 7.10 Use right shifts to divide the unsigned number 65143
by 4. 'ut the quotient in AX.

Solution: To divide by 4, two right shifts are needed. Since the divi-
dend is unsigned, we use SHR. The code is

MOV AX, 65143 ;AX has number
MoV CL,2 _ ;CL has number of right shifcs
SHR AX,CL ;divide by 4

Example 7.11 If AL contains -15, give the decimal value of AL after
SAR AL,1 is performed.

Solution: Execution of SAR AL,1 divides the number by 2 and rounds
down. Dividing -1§ by 2 yields -7.5, and after rounding down we get -8.
In terms of the binary contents, we have -15 = 11110001b. After shifting,
we have 11111000b = -8.

Figure 7.5 ROL

CF 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 O

Word

Personal
Sticky Note
MOV AX,65143
MOV CL,2
SAR AX,CL

Chapter 7 Logic, Shift, and Rotate Instructions 127

More General Multiplication and Division
We've seen that multiplication and division by powers of 2 can be

" -accomplished by left and right shifts. Multiplication by other numbers, such as

10d, can be done by a combination of shifting and addition (see Chapter 8).

" In_Chapter 9, we cover the MUL and IMUL, DIV and IDIV instruc-
tions. They are not limited to multiplication and division by powers of 2,
but are much slower than the shift instructions.

7.3
Rotate Instructions

Rotate Left

The instruction ROL (rotate left) shifts bits to the left. The msb is
shifted into the rightmost bit. The CF also gets the bit shifted out of the
msb. You can think of the destination bits forming a circle, with the least
significant bit followmg the msb in the circle. See I‘ngurc 7.5. The syntax is

ROL- destination, 1

and - -

'ROL destination,CL

Rotate Right

The instruction ROR (rotate right) works just like ROL, except that
the bits are rotated to the right. The rightmost bit is shifted into the msb,
and also into the CF. See Figure 7.6. The syntax is

ROR destination,1

and

ROR Aesrinationn.CT,

Figure 7.6 ROR

1 14 13 12 19 10 9 8 7 6 5 .4 3 2 1 O CF
Word

128 7.3 Rotate Instructions

Figure 7.7 RCL

6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7
Word

7 6 5 4 3 2 1 0

Byte

In ROL and ROR, CF reflects the bit that is rotated out. The next
example shows how this can be used to inspect the bits in a byte or word
without changing the contents.

Example 7,12 Use ROL to count the number of 1 bits in BX, without
changing BX. Put the answer in AX.

Solution:
XOR AX,AX ;AX counts bits
MOV CX,16 ;loop counter
TOP: ' '
ROL" BX,1 - :C F = bit rotated out
JNC NEXT ;0 bit
INC AX ;71 bit, increment total
NEXT: . : ’
LOOP TOP ;loop until done

In this example, we used JNC (Jump if No Carry), which causes a jump if

CF = 0. In section 7.4, we use ROL to output the contents of a register in
binary.

Rotate Carry Left
The instruction RCL (Rotate through Carry beh) shlfts the bits of

_.the destination to the left. The msb is shifted into the CF, and the previous

value of CF is shiited into the rightmost bit. In other words, RCL works like

just like ROL, except that CF is part of the circle of bits belng rotated. See

Figure 7.7. The syntax is

" RCL dest ination,}

and
RCL destination,CL

Chapter 7 Logic, Shift and Rotate Instructions 129

Figure 7.8_RCR

15 14.13 1211 10 9 8 7 6 5 4 3 2 1 0
word

7 6 543 21 0
Byte

Rotate Carry Right

The instruction RCR (Rotate through Carry Right) works just like RCL,
except that the bits are rotated to the right. See Figure 7.8. The syntax is

RCR * destination,1 '

and)
RCR destination,CL

Example 7.13 Suppose'DH contains 8Ah, CF = 1, and CL contains 3.
What are the values of DH and CF after the instruction RCR DH,CL is
executed?.

Solution:

CF : DH
initial values . 1 ’ 10001010
after 1 right 0 : 11000104
rotation :
after z right 1 01100010
rotations
after 3 right 0 10110001.= B1h
rotations ’ ’

Effect of the rotate instructions on the flags
7 SF, PF, ZF reflect the result
, AF is undefined
" CF = last bit shifted out '
OF = 1 if result ghanges' slgf\ on the last rotation

1§b 7 4 Binary and Hex 1O

An Appllcatlon' Revemng a Blt Pattern

As an application of the shift and rotate instructions, let's consider
~the problem of reversing-the bit pattern in a byte or word. For example, if
AL contains 11011100, we want to make it 00111011,

" An easy way to do this is to use SHL to shift the bits out the left end
of AI. into CE,'and thén use RCR to move them into the left end of another
register; for example, BL. If this is done eight times, BL will contain the.
reversed bit pattern and it can be copied back into AL. The code is

o . MOV CX, 8 ;number of operations to do
. REVERSE:
SHL AL, 1 iget a bit:- into CF
RCR BL,1 ;rotate it into BL

LOOP REVERSE ;loop until done
MOV AL,BL ;AL ‘gets reversed pattern

7.4
Binary and Hex 110

One useful application of the shift and rotate instructions is in binary
and'hex 1/O.

- Binary Input

For binary input, we assume a program reads in a binary number
from the keyboard, followed by a carriage return. The number actually is a
character string of 0’s and 1’s. As each character is entered, we need to convert
it to a bit value, and collect the bits in a register. The following algorithm
reads a binary number from the keyboard and stores its value in BX.

i. Algorithm for Binary Input

Clear BX /* BX will hold binary value */
Input a character /* ‘0’ or ‘1’ */
WHILE character <> CR DO
Convert character to binary value
Left shift BX
Insert value into 1lsb of BX
Input a character
END_WHILE

'Demonstration -(for input 110)

Clear BX
BX = 0000 0000 0000 0000 .
Input character ‘1’, convert to 1
- R

" Left 'shift'Bx”’

BX = 0000°:0000 0000 0000
Insert value into 1sb

BX = 0000 0000 0000 0001
Input character ‘l’, convert to 1

- Left shift- BX - :

BX = 0000 0000 0000 0010
Insert value into 1lsb

BX = Q000 0000 0000 0011

’

Chapter 7 Logic, Shift, and Rotate Instructions 131

Input character ‘0' ;~ cénvert'to 0

. Left shift BX

.

BX = 0000 0000 0000 ono
Insert value into 1lsb |
BX = 0000 0000 0000 ouo

. BX contains 110b

The algorithm assumes (1) input characters are either “0”, “1”, or CR, and
(2) at most 16 binary digits are input. As a new digit Is input, the previous
bits in BX must be shifted to the left to make rcom; then an OR operation
can be used to insert the new bit into BX. The assembly instructions are

"XOR ‘- BX, BX iclear BX
MOV AH,1 ;input char furction
INT 21H ’ .iread a character
WHILE :
CMP AL, ODH ;CR?
JE 'END_WHILE ;yes, done
AND AL, OFH ;no, convert to binary value
SHL " BX,1 ;make roum for new value
OR = BL,AL ;put vaiue into BX
. INT 21H | ;read a8 character .
JMP WHILE iloop back
END_WHILE: -
Binary Output

Outputting the contents of BX in binary also involves the shift-op-
eration. Here we only give an algorithm; the assembly code is left to be done
as an exercise. ,

Algorithm for Binary Output

FOR 16 times DO
Rotate left BX /* BX holds output value,
put ‘msb into CF */
IF CF = 1
THEN ’
output ‘1’
ELSE
output ‘0’
- END_IF,
END_FOR

Hex Input

Hex input consists of digits ("0” to “9”) and letters (“A” to “F")
followed by a carriage return. For simplicity, we assume that (1) only upper-
case letters are used, and (2) the user inputs no more than four hex characters.
The process of converting characters to binary values is more involved than
it was for binary mput and BX must be shifted four times to make room for
a hex value.

Personal
Sticky Note
XOR BX,BX
MOV AH,1
INT 21h
WHILE:
	CMP AL,0DH
	JE END_WHILE
	AND AL,0FH
	SHL BX,1
	OR BL,AL
	INT 21H
	JMP WHILE
END_WHILE

Personal
Highlight

Personal
Sticky Note
for converting AL to binary we use AND AL,0F because ancii value of zero is 30 i.e 0F
Doubt
BX or Bl?

132

7.4 Binary and Hex /O

Algorithm f&r Hex Input

Clear BX /* BX will hold‘inppt value */
input hex character ’) :
WHILE character <> CR DO : -
convert character to binary value
left shift BX 4 times . N
insert value into lowér 4 bits of BX
input a character -~

. END_WHILE

Clear BX

Demonstration (for input 6AB)

“BX = 0000 0000 0000 0000

Input ‘6’, convert

to 0110

Left shift BX 4 times
BX .= 0000 0000 0000 0000

‘Insert value into lower 4 bits of BX

BX = 0000 0000 .0000 0110 .

Input ‘A’, convert

tc Ah = 1010

Left shift BX 4 times
BX = 0000 0000 0110 0000

Insert value into

lower 4 bits of BX

BX = 0000 0000 0110 1010

Input ‘B’, convert

to 1011

Left shift BX 4 times
BX = 0C00 0110 1010 0000

'Insert value into lower 4 bits of BX

BX = 0000 0110 1010 1011

BX contains O06ABh.
Here is the code:

XOR
MOV
MOV
INT
WHILE_:
CMP
JE
;convert character
CMP
JG
sinput is a digit
AND
: JMP
LETTER:
- SuUB
SHIFT:
SHL
;insert value into
CR

INT
' IMP
END_WHILE:

BX, BX ;clear BX
CL,4 ;counter for 4 shifts
AH,1 - ;input character function’

21H ;input a character

AL,ODH ;CR?

END_WHILE ;yes, exit -

to binary value

AL, 39H ;a digit?
LETTER. ;no, a letter’

AL, OFH ;cbnvert digit to binary value
SHIFT ;go to insert in BX

AL,37H[::Lconvert letter to ‘binary valve

BX,CL ;make room for new value

BX !

BL,AL ;put value into -low 4 bits
;of BX

21H ;input a character

WHILE ;loop until CR

Personal
Sticky Note
XOR BX,BX
MOV CL,4
MOV AH,1
INT 21H
WHILE:
	CMP AL,0DH
	JE END_WHILE
	CMP AL,39H
	JG LETTER
	AND AL,0FH
	JMP SHIFT
LETTER:
	SUB AL,37H
Shift:
	SHL BX,CL
	CR BL,AL
	INT 21H
	JMP WHILE
END_WHILE:

Personal
Sticky Note
AL-37H

Chapter 7 Logic, Shift, and Rotate Instructions 133

Note that the program does not check for valid input characters.

Hex Output) -

. BX contains 16 bits, . which equal four hex digit values. To output

the contents of BX, we start from the left and get hold of each digit, convert
it to a hex character, and output it. The algorithm which follows is similar
to that for binary output.

Algorithrh for Hex Output

FOR 4 tzmes DO

"

Move BH to DL /* ‘BX holds output value */
shift "DL 4 ttmes to-the right -
IF DL < 10 RN
: THEN_ . ’ -
.sconvert to character in *0"..‘9,
.ELSE ' '
cornivert to - character in ‘A’..‘F’
END ‘IF * RN .

_output .character
Rotate BX lefr 4 tzmes'
END_FOR

_berhohstzatioq (BX Contains 4CA9h)

BX = '4CASh '= 0100 1100 1010 1001
Move BH to. DL . ~
DL = 0100 1100 !
Shlft DL 4 times to the right
. DL = 0000 0100 '
bonvert to character and output
- =*0011 0100 = 34h = ‘4°
Rotate BX left.4 times
..BX = 1100 1010 1001 0100
Move BH to.DL . 7 °
- DL = 1100 1010 . |
Shift DL 4 times td .the right
DL = 0000 1100
_Convert to character "and OutpuL
DL = 0100 0011 = 43h = rC
" Rotate BX left 4 times :
BX = ‘1010 1001 0100 1100
Move ‘BH to DL - ° .. .
DL = 1010-71001 : "« .1
Shift DL 4 times.sto ‘the: right
DL = 0000 1010 ,
Convert, to character and output
DL = 0100 0010 = 42h = ‘B’
Rotate BX left 4 times
BX = 1001 0100 1100 1010
- Move BH to DL - A
DL = 1001 0100 .
Shift DL 4 times to the right

134

Summary

DL = 0000 1001
Convert to character and output
DL = 0011 1001 = 3%h = ‘9’
Rotate BX 4 times to the left
BX = 0100 1100 1010 1001 = original contents

Coding the algorithm is left to be done as an exercise.

Summary

e The five logic instructions are AND, OR, NOT, XOR, and TEST.

¢ The AND instruction can be ‘:sed to clear individual blts in the
destinatlon

. The OR instruction is useful in setting individual bits in the desti-
nation. It can also be used to test the destination for zero.

¢ The XOR instruction can be used to complement individual bits
in the destination. It.can also be used to zero out the destination. _

* The NOT instruction performs the one’s complement operation
on the destination.

¢ The TEST instruction can be used to examine individual bits of
the destination. For example, it can determine if the destination
contains an even or odd number.

¢ SAL and SHL shift each destination bit left one place. The most
significant bit goes into CF, and a 0 is shifted into the least signifi
cant bit.

¢ SHR shifts each destination bit right one place. The least significant
bit goes into CF, and a 0 is shifted into the most sighificant bit.

¢ SAR operates like SHR, except that the value of the most signifi-
cant bit is preserved.

* The shift instructions can be used to do multiplication and divi-
sion by 2. SHL and SAL double the destination’s value unless over-
flow occurs. SHR and SAR halve the destination'’s value if it is
even; if odd, they halve the destination’s value and round down
to the nearest integer. SHR should be used for unsigned arithme-
tic, and SAR for signed arithmetic.

* ROL shifts each destination bit left one position; the most signifi-
cant bit is rotated into the least significant bit. For ROR, each bit
goes right one position, and the least significant.bit r\tate: into
the most significant bit. For both Instructions, CF gets the iast bit
rotated out.

RCL and RCR operate like ROL and ROR, except that a bit rotated
out goes into CF, and the value of CF rotates into the destination.

Multiple shifts and rotates can be perfom?ed. CL must contain
-.. the.number of times the shift or rotate is to be executed.

+ The shift and rotate instructions are useful in doing binary and
hex 1/0.

Chaptér-.7 Logic, Shift, and Rotate Instructions 135

. Glossary . ..
clear “Change a value to 0
- comiplement "Change fromaOtoalorfromaltoa0
“mask 'A bit pattern used in logical operations to
clear, set, or test specific bits in an operand
‘set - Change a bit value toa 1
T \
' AR [
New Instructions
.'AND RCR SER -
NOT - ROL SER
OR . ROR™ TEST
RCL SAL/SHL XOR

£xercises
. 1. Perform the folIowing logic operations

a. 10101111 AND 10001011

b 10110001 OR 01001001

c. .01111100 XOR 1101101y

d. NOT 01011110,

2. Give a logic instruction to do each of the_ following.

a. Clear the even-numbered bits of AX, leaving the other bits
* unchanged::- - .7

b. Set the most and least significant bits of BL, leavmg the other
, bits’ unchanged -

c Complement the msb of DX, leaving the other bits
unchanged

d. Replace the value of the word variable WORD1 by its one’s
* complement. = - .

3. Use the TEST instruction to do each of the following.-

a. Set ZF if the contents of AX is zero.

'b.: “Clear ZF if BX contains an odd number.”

< Set'SF xf DX contams a negative number.

d. “Set ZF if DX contams a zero Or positive number.
e. Set PF 1f BL contalns an even number of 1 bits.

4. Suppose AL ‘contains 11001011b and CF = 1. Give the new con-
tents of AL after each of the followlng instructions is exec.ted. As-
sume the preceding initial conditions for each part of this
question. -

-a.»SHL'AL, 1.

b 'SHR AL 1.

"¢/ 'ROL'AL,CL'if CL Conitains 2
"d. ROR AL CL 1(CL comams 3
e. SAR ALCL, 1f“C_L gonga_ms 2
f RCLALY
g RCR AL,CL if CL contams 3

136

Exercises

Write one or more instructions to do each of the following.
Assume overflow does not occur.

a. Double the value of byte variable BS. .

b. Muitiply the value of AL by 8. .

c. Divide 32142 by 4 and put the quotient in AX.

d. Divide -214S5 by 16 and put the quotient in BX.

Wirite instructions to do each of the following:

a. Assuming AL has a value less than 10, convert it to a decimal
character. T

b. Assuming DL contains the ASCII code of an uppercase letter,
convert it to lower case.

Write instructions to do each of the following. _

a. Multiply the value of BL by 10d. Assume overflow does not occur.

b. Suppose AL contains a positive ‘wmber. Divide AL by 8, and
put the remainder in AH. (Hint: use ROR.)

v

Programming Exercises

8.

10

11.

Write a program that prompts the user to enter a character, and
on subsequent lines prints its ASCII code in binary, and the num-
ber of 1 bits in its ASCII code.

Sample execution:

TYPE A CHARACTER: A

THE ASCII CODE OF A IN BINARY IS 01000001

THE NUMBER .OF 1 BITS IS 2

Write a program that prompts the user to enter a character and
prints the ASCII code of the character in hex on the next line. Re-
peat this process until the user types a carriage return.

Sample execution:

TYPE A CHARACTER: 2Z
THE ASCII CODE OF Z IN HEX IS 5aA.
TYPE A CHARACTER:

Write a program that prompts the user to type a hex number of
four hex digits or less, and outputs it in binary on the next line.
If the user enters an illegal character, he or she should be
prompted to begin again. Accept only uppercase letters.

Sample execution:

TYPE A HEY NUMBER (0 TO FFFF): 1la

ILLEGAL HEX DIGIT, TRY AGAIN: 1ABC

IN BINARY IT IS 0001101010111100

Your program may ignore any input beyond four characters.
Write a program that prompts the user to type a binary number
of 16 digits or less, and outputs it In hex on the next line. If the
user enters an illegal character, he or she should be prompted to
begin again. .
Sample execution:

TYPE A BINARY NUMBER, UP TO 16 DIGITS: 11100001
IN HEX IT IS El

12.

13.

14.

Chapter 7 Logic, Shift, and Rotate Instructions 137

Your program may ignore any input beyond 16 characters.

Write a program that prompts the user to enter two binary numbers
of up to 8 digits each, and prints their sum on the next line in bi-
nary. If the user enters an illegal character, he or she should be

" prompted to begin again. Each input ends with a carriage return.

Sample execution: -) .
TYPE A BINARY NUMBER, UP TO 8 DIGITS:11001010

" TYPE A BINARY NUMBER, UP TO 8 DIGITS:10011100
" THE BINARY SUM IS 101100110 .

Write a program that prompts the user to enter two unsigned hex
numbers, 0 to FFFFh, and prints their sum in hex on the next

" line. If the user enters an illegal character, he or she should be

prompted to begin again. Your program should-be able to handle
the possibility of ynsigned overflow. Each mput ends with a car-
riage return.]

Sample execution: . -

TYPE A HEX NUMBER, O - FFEF: 21AB

TYPE A HEX NUMBER, 0 - FFFF: FEO3

THE - SUM TS 11FAE

Wirite a program that prompts the user to ¢nter a string of deci-
mal digits, ending with a carriage return, and prints their sum in

" hex on the next line. If the user enters-an illegal character, he or

she should be prompted to begin agam :
Sample execution: -

ENTER A DECIMAL DIGiT STRING: 1299843

_THE SUM OF THE DIGITS IN HEX 1S 0024

The Stack and
Introduction to
Procedures

Overview

The stack segment of a program is used for temporary storage of data
and addresses. In this chapter we show how the stack can be manipulated,
and how it is used to implement procedures.

In section 8.1, we introduce the PUSH and POP instructions that
add and remove words from the stack. Because the last word to be added to
the stack is the first to be removed, a stack can be used to reverse a list of
data; this property is exploited in section 8.2.

Procedures are extremely important in high-level language program-
ming, and the same is true in assembly language. Sections 8.3 and 8.4 discuss
the essentials of assembly language procedures. At the machine level, we can
sce exactly how a procedure is called and how it returns to the calling program.
In section 8.5, we present an example of a procedure that performs binary
multiplication by bit shifting and addition. This example also gives us an
excuse to learn a little more about the DEBUG program.

8.1
The Stack

A stack is one-dimensional data structure. Items are added and re-

. moved from one end of the structure; that is, it is processed in a “last-in,
" first-out” manner. The most recent addition to the stack is called the top

of the stack. A familiar example is a stack of dishes; the last dish to go on
the stack is the top one, and it’s the only one that can be removed easily.

139

140 8.1 The Stack

A program must set aside a block of memory to hold the stack. We'
have been doing this by declanng a.stack segment; for example,
.STACK 100H.

When the program is assembled and loaded in memory, $S Will contain the
segment number of the stack segment. For the precedmg stagk declaration,.

SP, the stack pointer, is initialized-to 100h. This. regrtsents the emgity stack »
position: When the stack is not empty, SP contains the offset ‘address, of the -

top of the stack.

PUSH and PUSHF

To'add a new word to the stack we PUSH it on, The syntas is.
PUSH sourc‘e ’ .
where source is a 16-bit register or memory word. For example
PUSH AX ' '

Execution of PUSH causes the followmg to happen:
1. SP is decreased by 2.

2. A copy of the source content is moved to the address specxﬁed by
SS:SP. The source is unchanged.

" The instruction PUSHF which has no operands, pushes the contents of the

FLAGS register onto the stack.

Initially, SP contains the offset address of the memory locatlon im-
mediately following the stack segment; the first PUSH decreases SP by 2,
making it noint to the last.word in the stack seement. Recause each PUSH

Figure 8.1A Empty Stack

. Offsetv

00FD

00F2

O00F4

00F6

- QOF8
0100 SP

OO0FA

0oFC - 1234 AX

OOFE

0100 - _._‘-,——5” .. 5678 J BX

STACK (empty)

hanter 8 The Stack and Introduction to Procedures

Figure 8.18 After PUSH AX

" Offset*

00F0

00F2

00F6 -

00F8

00FA

.00FC

OOFE

1234

——— SP

+ 0100

STACK

ot

OOFE

1234

5678

SP

B8X

141

decreases SP, the stack grows t0ward the beginning of memory Figure 8.1
shOW} how PUSH works

- 1C After PUSH BX .

© Offset

00F0

00F2

- O0F4

00F6

00F8

O00FA

00FC

5678

e——— 5P

OOFE

123

0100

STACK

00FC

1234

5678

SP,

AX

. BX

8.1 The Stack

POP and POPF

To remove the top item from the stack, we POP it. The syntax is
POP destination
where destination is a 16-bit register (except IP) or mémory word. For example,
POP BX

Executing POP causes this to happen:
1. The content of SS:SP (the top of the stack) is moved to the desti-
nation.)
2. SP is increased by 2.

Figure 8.2 shows how POP works.
The instruction POPF pops the top of the stack into the FLAGS register.
There.is no effect of PUSH, PUSHF, POP, POPF on the flags.
Note that PUSH and POP are word operations, so a byte instruction
such as

llegal: PUSH DL A
is illegal. So is a push of immediate daia, such as
ltlegal: PUSH 2 '

Note: an immediate data push Is legal for the 80186/80456 processors. These
processors are discussed in Chapter 20.

In addition to the user’s program, the operating system uscs the stack
for its own purposes. For example, to implement the INT 21h functions,
DOS saves any registers it uses on the stack and restores them when the
interrupt routine is completed. This does not cause a problem for the user

8.2A Before POP

Offset

OOFQ

00F4

0076

00F8 .
O0FC sP

00FA

00FC 5678 ¢——— SP FFFE X

00FE 1234

0100 0001 DX

STACK

Chapter 8 The Stack and Introduction to ~Pro.cedure$ 143

N

82R After POP CX

> 00F2-

00FE | SP

00FC 5678 - 5678 o

QO0FE 1234 |e SP

0100 . Coe). . 0001 BX

STACK

because any values DOS pushes onto the stack are popped off by DOS before
it returns control to the user’s program. ’

8.2C After POP DX

0100 | SP

00FC 5678 5678 o

0100 : ¢——— $P 1234 DX

STACK (empty)

144

8.2 A Stack Application-

8.2
A Stack Application

Because the stack behaves in a last-in, first-out manner, the order
:hat items come off the stack is the reverse of.the order they enter it. The
‘ollowing program uses this property to read a sequence of characters and’

display them in reverse order on the next line.

Algorithm to Reverse input_

Display a ‘?/

Initialize count to-0

Read a character

WHILE character is not a carrxage return DO
push character onto the stack
increment count :
read a chazacter

-END _WHILE;

Go to a new line

FOR count times DO
pop a character from the stack,
dxsplay it;

END_FOR

Here js the program:

Program Listing PGM8_1.ASM
TITLE PCMB_1: szpass INPUT

237 . JAUCEL . SMA

3: .. .STACK 1CCH

4: .CODR)

S: MAIN PROC

6: ;displdy user prompt

7 MOV AH, 2 ;prepare to display
8: MOV DL, ’?’ ;char .to display
9: CINT 21H . ;display 27

10: :initialize character count)

11: _XOR €X,CX ;jcount = 0.

12: ;read a character

13: MOV AH, 1 ;prepare to read
14: INT -21H :read a char

15: ;while character is not a cakriagé return do
16: WHILE_: . .

17: CMP ‘AL, ODH " ;CR? .

18: JE END_WHILE ;yes, exit loop
19: ;save character on the stack and increment
20: PUSH AX " ;push it on stack
21: . INC cX ;count = count + 1
22: ,read a character)

23: “INT 21H " ;read a char

24: JMP | WHTLE ;loop back

25: END WHILL]

-26: ;go to a néw lzne

27 _MOV' AH,2 . ;display char fen
28 . MOV DL, ODH ;CR :

29: INT 21H ;execute

30 ‘MOV DL, OAH ;LF

coun!

Chapter 8 The Stack and Introduction to Procedures 145

31: INT 21H ;iexecute -
32: JCXZ EXIT ;exit if no characters read
33: ;for count times do . :
@ 34: TOP: * A
35: :;pop a character from the stack
36:- . POP bx : ;get a char from stack
37: ;display. it
38: INT 21H ' ;display it
39: . LOOP TOP -
40: . ;end, for :
41: EXIT:
<42: L. ¢ «~MOV ‘AH, 4CH
43z, 0 [.INT . 21H
44: MAIN-., "ENDP o
45: .« . END MAIN

Because the number of characters to be entered is unknown, the
program uses CX to count them. CX controls the FOR loop that displays the
characters in reverse order. . '

In lines .16-24, the program exccutes a WHILL loop that pushes
characters on the stack and reads new ones, until a carriage return is entered.
Even though the input characters are in AL, it's necessary 1o save all of AX
on the stack, because the operand of PUSH must be a word.

When the program exits the WHILE loop (line 25), all the characters
are on the stack, with the low byte of the top of the stuck containing the
last character to be entered. AL contains the ASCII code of the carriage return.

At line 32, the program checks to sec if any characters were read. If
not, CX contains 0 and the program jumps to the DOS exit. If any characters
were read, the program enters a FOR loop that repeatedly pops the stack into
DX (so that DL will get a character code), and displays a character.

)
Sample exccutions:

C>PGMB_1
?THIS IS A TEST
TSET A SI SIHT

C>PGMB_1
2A
A

C>PGMS8_1

? (cnly carria,e return typed)
(no output) T

C>

Personal
Sticky Note
is count not regquired at pop?

146 - 8.3 Terminology of Procedures

8.3
Terminology of
Procedures

In Chapter 6, we mentioned the idea of top-down program design.
The idea is to take the original problem and decompose it into a series of
subproblems that are easier to solve than the original problem. High-level
languages usually employ procedures to solve these subproblems, and we
can do the same thing in assembly language. Thus an assembly language
program can be structured as a collection of procedures.

One of the procedures is the main procedure, and it contains the
entry point to the program. To carry out a task, the main procedure calls
one of the other procedures. It is also possible for these procedures to call
each other, or for a procedure to call itself.

When one procedure calls another, control transfers to the called
procedure and its instructions are executed; the called procedure usvally
returns control to the calier at the next instructicn after the call statement
(Figure 8.3). For high-level languages, the mechanism by which call and
return are implemented is hidden from the programmer, but in assembly
language we can see how it works (see section 8.4).

Procedure Declaration
The syntax of ptocedure declaration is the followlng:

name PROC type
;body of the proqédure
. . RET .

name ENDP ‘m,

Name is the user-defined nanie of the procedure. The optional operand type
is NFAR or FAR (if type is omitted, NEAR is assumed). NEAR means that
the statement that calls the procedure is in the same segment as the proce-
dure itself; FAR means that the calling statement is in a different segment.
In the following, we assume all procedures are NEAR; FAR procedures are
discussed in Chapter 14. .

Figure 8.3 Procedure Call
and Return *

MAIN PROC

— CALL PROCY
——| next instruction

PROC1 PROC
first instruction

RET

Chapter 8 The Stack and Introduction to Procedures 147

RET
The RET (return) instruction céuse; control to transfer back to the

calling procedure. Every proceduré (except the main procedure) should have
a RET someplace; usually it’s the last statement in the procedure.

Communication Between Procedures

. A procedure must have a way to receive values from the procedure
that calls it, and a way to return‘results. Unlike high-level language proce-
dures, assembly language procedures do not have parameter lists, so it’s up
to the programmer to devise a way for procedures to communicate. For ex-
ample, if there are only a few input and output values, they can be placed
in registers. The general issue of procedure communication is discussed in
Chapter 14. *

. Procedure Documentation

In addition to the required procedure syntax, it's a good idea to
document a procedure so that anyone reading the program listing will know
what the procedure does, where it gets its input, and where it delivers its
output. In this book, we generally document procedures with a commenti
block like this: '

(describe‘ what the procedure does)

’

; input: (where it receives information from
=" 7 "the calling program) ‘
; output: (where it delivers results to
the calling program)
; uses: (a list of procedures that 1t calls)

3.4 .
CALL and RET

CALL '~—address__expression

To invoke a procedure, the CALL instruction is used. There arc two
kinds of procedure calls, direct and indirect. The syntax of a direct pro-

cedure callis

CALL name
where name is the name of a procedure. The syntax of an indirect procedur:

call is - . .

where address_expression specifies a register ot memory'loca:(i()n' containiny, th
address of a procedure.
Executing a CALL instruction causes the f{ollowing to happen

1. The return address to the calling program is saved on the st !
This is the offset of the next instruction after the CALL sta' .-
ment. The segment:offset of this instruction is in CS:IP ai -»
time the call is executed.

148 84 CALL and RET

CHiset address »;-. _Code segment

MAIN PROC ’ N

0010 { CALL PROC1
P —» 0012 | next instruction

Offset Stack segment

address
PROC1T PROC
0200 | firstinstruction
00FC
' OOFE
RET 0100 j¢~——— SP

L

figure 8.4A - Before CALL

Off<et address Code segment

MAIN PROC

0010 { CALL PROCH
0012 next instruction

Offset Stack segment

address
PROC1 PROC
IP —% 0200 | firstinstruction
Q0OFC
OOFE | 0012 {&———S5P
RET 0100

Figure 8.48 After CALL

‘2. -IP gets the offset address of the first instruction of the procedure.
This trarisfers control to the procedure. See Figures 8.4A and 8.4B.

To return from a que.dure, the instruction

RET pop_value

Chapter 8 The Stack and /ntroddctiop to Prc).cedures

Offset address
0010
0012
0200
e
P —» 0300

Code segment

MAIN PROC

CALL PROC1- e

next instruction, =~ |

PROC1 PROC
first instruction

RET

‘Offset Stack segment

address
OOFC
- OOFE 0012 ¢———— SP
: 0100 - .

Figure 8.5A Before RET

Offset address

Code segment

0010
P —» 0012

0200

0300

MAIN PROC

CALL PROCY
next instruction

PROC1 PROC
fiest instruction

RET

Offset Stack segment
address

00FC

OOFE

0100 T ole——p

Figure 8.58 After RET

a9

is executed. The integer argument pop_value is optional. For a NEAR procedure,
execution of RET causes the stack to, be popped into IP. If a pop_value N is
specified, it is added to SP, and thus has the effect of removing N additional
bytes from the stack. CS:IP now contains the segment:offset of the return ad-
dress, and control returns to the calling program. Sce Figures 8.5A and R SR

Personal
Highlight

Personal
Highlight

150 85 An Examp’/e of a Procedure

8.5

An Example of a As an example, we will write a procedure for flqding tl}e 'product of

Procedure two positive integers A and B by addition and bit shifting. This is one way
roc unsigned muitiplication may be implemented on the computer (in Chapter

9 we introduce the multiplication instructions).

Multiplication algorithm:

Product = O
REPEAT
IF lsb of B is 1 (Recall 1lsb = least
significant bit)

3

THEN
Product = Product + A
END_IF .
Shift left A -
Shift right B
UNTIL B = 0

For example, if A= 111b = 7 and B = 1101b = 13

Product = 0

Since 1sb of B is 1, Product = 0 + 11ib = 11'b
Shift left A: A = 1110b

Shift right B: B = 110b

Since 1lsb of B is O,
Shift left A: A = 11100b
Shift right B: B8 = 11b

Since lsb of B is 1

Product = 111b + 131100k = 107011b
Shift left #: A = 1il10GOb

Shift right B: B = 1

Sirce lsb cf B is 3

Product = 100011k + 111000b = 10110.ib
Shift left A: A = 1110000b

Shift right B: B = 0

Since lsb of B = 0
Return Froduct = 1011C1lb = 9id

Note that we get the same answer by performing the usual decimal multi-
plication process on the binary numbers:
111b
x 1101b

111
00C
111

111 -
1011011b

. L

In the following program, the algorithm is coded as a procedure
MULTIPLY. The main program has no input or output; we will use DEBUG
for the 1/0)

Chapter 8 The Stack and Introduction to Procedures 151

"Program Listing PGM8_2.ASM

f: TITLE PGMB _2: MULTIPLICATION BY ADD AND SHIFT
2: .MODEL ~ 'SMALL

3: .STACK 100H

At ¢.CODE- -~

5: %" MAIN . PROC; - :

6: :execute in DEBUG. Place A in AX and B in BX

7: CALL MULTIPLY

8: ;DX will contain the product
9: ‘ MOV AH, 4CH

10: “INT 21H

11: MAIN ENDP 4

12: MULTI.PLYE;ROC
13: ;multiplies two nos. A and B by shifting and addition

14: ;input: “AX = A,"BX = B. Nos..in range 0 - FFh
15: ;output: DX = product

116: PUSH AX
S17: PUSH BX .
18: " XOR DX,DX ;product = 0
19: REPEAT: - - ~ '

20: ;if B is odd '

21: - " TEST BX,1" ;is B odd?

22: Jz END_IF .o, even

23: ;then

24: ADD DX, AX ;prod = prod + A
25: END_IF: ' ’ '
26: SHL &X,1° ;shift left A
27: SHR BX,1 ;Shift right B
28: ;until

29: .JINZ REPEAT

30: POP BX

+31% POP’ 'AX

30 RET e

33: MULTIPLY ENDP '

347 - - ° "END MAIN

=Procedure MULTIPLY receives its input A and B through registers AX and
__BX, respectively. Values are placed-in these registers by the user’inside the
DEBUG program; the product is returned in DX=Ir, order te avoid overflow,
_.A and B are restricted to range from O to FFh.
- -. A procedure usually begins by: savmg all the registers it uses on the
sstack and ends by restoring these registerS*-Tms is done because the calling
program may have data stored in registers, and the actions of the _procedure
_could cause unwanted side effects if the registers are not preserved. Even
though it’s not really necessary in this program, we illustrate this practice
by pushing AX and BX on the stack in lines 16 and 17, and restoring them
in lines 30 and 31. The registers are popped off the stack in the reverse order
- that they were pushed on. .
After clearing DX, whnch ‘'will hold the product, the procedure enters
a REPEAT loop (lines 19-29). “At liné 22, the procedure checks BX's least
significant bit. If the Isb of BX is 1, then AX is added to the product in DX;
if the Isb of BX is 0, the procedure skips to line 26. Here AX is shifted left,
and BX is shifted right; the loop continues until BX = 0. The procedure exits -
. with the produgt in DX.

Personal
Sticky Note
.TITLE Progm
.MODEL SMALL.STACK 100H
.CODE
MAIN PROC
CALL MULTIPLY
MOV AH,4CH
INT 21H
MAIN ENPP
MULTIPLY PROC
PUSH AX
PUSH BX
XOR DX,DXREPEAT:
TEST BX,1
JZ END_IF
ADD DX,AX
END_IF:
SHL AX,1
SHR BX,1
JNZ REPEAT
POP BX
POP AX
RET
MULTIPLY ENDP
END MAIN

152 8.5 An Example of a Procedure

After assembling and linking the program, we take it into DEBUG
(in the following, the user’s response appears in boldface):

C> DEBUG PGMS_2.EXE

DEBUG responds with its command prompt “-”. To get a listing of the pro-
gram, we use the U (unassemble) command.

_u .
177F:0000 E80400 CALL 0007
17°F:0003 B44C MoV AH, 4C
177F:0005 CD21 INT 21
177F:0007 50 PUSH AX
177F:0008 53 PUSH BX
177F:0009 33D2 XOR " DX, DX
177F:000B F7C30100 TEST BX, 0001
177F:000F 7402 JZ 0013
177F:0011 03D0D ADD DX, AX
177F:0013 DIEQ SHL -’ ax,1
177F:0015 DI1EB SHR BX, 1
177F:0017 7SF2 JINZ J00B
177F:0019 <B popP BX
. 177F:001A S8 pPOP AX
177F:001B C3 RET
i77F:001C E3D1 Jcxz FFEF
177F:001E E38B Jcx2 FFAB
The U command causes DEBUG to interpret the contents of memory as
machine language instructions. The display gives the segment:offset of each
instruction, the machine code, and the assembly code. All numbers are ex-
5 pressed in hex. From the first statement, CALL 0007, we can see that proce-
‘ dure MAIN extends from 0000 to 0005; procedure MULTIPLY begins at 0007
and ends at 001B with RET. The instructions after this are garbage.
Before entering the data, let's look at the registers.
_R -t D -

AX=0000 BX=0000"" CX=001C DX=0000 $SP=0100 BP=0000 SI=0000 DI=0006~'”
D3=176F ES=17€F S$S=1781 CS=177F 1IP=0000 NV UP EI PL NZ NA PO V.
177F:0000 E80430 CALL (0007 -

U

The initial value of SP = 100h reflects that fact that we allocated 100h bytes
for the stack. To have a look at the empty stack, we can dump memory with
the D command. °

Chapter 8 The Stack and Introduction to Procedures 153

DSS:FO FF _ : . ,
1781:00F0 00 00 00 00 00 00 6F 17-A4 13 07.00 6F 17 00 00

The command DSS:FO FF means to display the memory bytes from SS:FO to
SS:FF. This is the last 16 bytes in the stack segment. The contents of each
byte is displayed as two hex digits. Because the stack is empty, everything
irf this display is garbage.. ,

Before executing the program, we need to place the numbers A and
B in AX and BX, respectively. We will use A = 7 and B = 13 = Dh. To enter
A, we use the R command:

-RAX

AX 0000:7
The command RAX means that we want to change the content of AX. DEBUG
displays the current value (0000), followed by a colon, and waits for us to enter
the new value. Similarly we can change the initial value of B in BX:

~-RBX

BX 0000:D

Now let's look at the registers again.
-R E}

AX=0007 BX=C00D C¥X=001C DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
DS=176F ES=176F - SS=1781 CS=177F IP=0000 NV UP EI PL NZ NA PO NC
177F:0000 E80400 CALL 0007

We see that AX ad BX now contain the initial values.
To see the effect of the first instruction, CALL 0007, we use the T .
(trace) command. It will execute a single instruction and display the registers.

HE] 8.5 An Example of a Procedure

-7
AX=0007 BX=000D CX=001C DX=0000 SP=00FE BP=0000 SI=0000 DI=0000
CS=176F ES=176F SS=1781 (CS=177F 1IP=0007 NV UP EI PL NZ NA PO NC

177F:06G627 50 PUSH AX

We notice two changes in the registers: (1) IP now contains 0007, the starting
offset of procedure MULTIPLY; and (2) because the CALL instruction pushes
the return address to procedure MAIN on the stack, SP has decreased from
0100h to OOFEh. Here are the last 16 bytes of the stack segment again:

-DSS:FO0 FF
1781:00F0 00 00 00 00 07 LO 00 00-07 00 7F 17 A4 13 03 00

The return address is 0003, but is displayed as 03 00. This is because DEBUG
displays the low byte of a word before the high byte.

The first three instructions of procedure MULTIPLY push AX and BX
onto the stack, and clear DX. To see the etfect, we use the G (go) command.

The syntax is
G offset

It causes the program to execute instructions and stop at the specified olfset.
From the unassembled listing given earlier, we can see that the next instruc-
tion after XOR DX,DX is at offset 600Bh.

~-GB

AX=0007 BX=04l0D CX=001C DX=0000 SP=00FA BP=00.;0 SI=0050 ©DI=32CC
DS=176F ES=17¢F 3s=1781 CS=177F 1IP=00GB NV U2 EI FL 2
177F:000B F7C30100 TEST BX, 0001 o

We see that the two PUSHes have caused SP to decrease by 4, from OOFEh
to OOFAh. Now the stack looks like this:

-DSS:FO FF .
1781:00FC 00 GO 00 00 07 00 CO 17-24 13 OD 00 07 GO C3 CO

The stack now contains three words; the values of BX (000D), AX (0007),
and the return address (0003). These are shown as 0D 00 07 00 03 00. -

Now let’s watch the procedure in action. To do 5o, we will execute
to the end of the REPEAT loop at offset 0017h:

Chapter 8 The Stack and Introduction to Procedures 155

-G17 :])
AX=000E BX=0006 CX=001C Dx=0007 SP=00FA BF=0000 S1=0C00 [£I=0000

DS=1"6F ES=176F SS=1781 CS=177F 1IP=0017 NV UP EI PL NZ AC PE CY
177F:0017 75F2 JNZ 000B

Because the initial value of B in BX was ODh = 1101b, the Isb of BX is 1, so
AX is added to the product in DX, giving 111b = 0007h. AX is shifted feft,
which doubles A to 14d = O00Eh, and BX is shifted right, which halves BX
(and rounds down) to 0006h = 110b.

' To get to the top of the loop, we'll use the T command again:

' 5

-T

'[‘ AX=u00L BX=0006 CX=001C DX=0007? SP=00FA BP=C0CC Si=0000 " C£I=C000
DS=176F ES=176F SE£=1781 (CS=177F 1IpP=00CB NV UP EI PL NZ AC PE (Y
177¢:0008 F7C30100 TEST BX,0001 :

. and execute again to the bottom:

-G17

AX=001C BX=0003 CX=001C DX=0007 SP=00FA BP=0000 SI=0000 5I=0000
DS=176F ~ ES=17€F S$S=1781 <CS$=177F 1IP=0017 NV UP EI PL N2 AC PE NC
1778:0017 75F2 SNZ 000B

PR + . v . , -
Beceuse BX = 0006h = 110b, the Isb of BX is 0, so the product in DX stays the
same. AX is shifted left to 11100b = 1Ch and BX is shifted right to 11b = 3h.

After two more trips through the loop, the product is in DX. Watch
AX, BX, and DX change:”

_T ..

EX=001C EX=0003 CX=001C DX=00C7 SP=00FA BpP=0000 S37=0000 DI=0000

DS=176Ff ES=176F $S=1781 (CS=177F - IP=000B NV UP EI PL NZ AC PE NC
»+177F;00CB F7C30100a- TEST BX,0001 R

-G17
AX=0038 BX=0001 CX=001C DX=0023 SP=00FA BpP=0030 S1=CCU0 DI=0002
DS=176F ES=176F SS=1781 C€S=177F 1IP=0017 NV UP EI PL NZ AC PO CY

177F:0017 75%F2 JNZ 000B

156 85 An Example of a Procedure

-7 .
AX=0038 BX=0001 CX=001C DX=0023 SP=00FA BP=0000 SI=0000 DI=0000
DS=176F ES=176F SS=1781 CS=177F IP=000B NV UP EI PL N2 AC PO CY

177F:000B F7C30100 TEST BX,0001 .

-G17
KX=0070 BX=0000 CX=001C DX=005B SP=00FA Bp=0000 SI=0000 DI=0000

DS=176F ES=176F SS=1781 CS=177F 1IP=0017 NV UP EI PL 2R AC PE CY
177F:0017 75F2 JNZ 000B

The last right shift made BX = 0, ZF = 1, so the loop ends. The product = 91

= 5Bh is in DX.
To terminate the procedure, we trace through the JNZ and the two

POP instructions:

-7
AX=0070 BX=0000 CX=0C1C DX=005B SP=00FA BP=0000 SI=0000 DI=0000
D8=176F ES=176F §S=1781 CS=177F 1IP=0019 NV UP EI PL ZR AC PE CY

177F:0019 SB POP BX

-T
AX=0070 BX=000D CX=001C DX=005B SP=00FC BP=0000 SI=0000 DI=0000
DS=176F ES=176F SS5=1781 (CS=177F 1IP=00l1A NV UP EI PL 2R AC PE CY

L77F:001A 58 POP AX

-7) .
AX=0007 BX=000D CX=001C DX=005B SP=00FE BP=0000 SI=0000 DI=0000
DS=176F ES=176F SS=1781 .C$-177F IP=001B NV UP EI PL ZR AC PE CY

177F:001B C3 RET

The two POPs have restored AX and BX to their original values. Let's look
at the stack: .

-DSS:FO0 FF
1781:06F0 70 00 70 GO 07 00 00 00-1B 00 7F 17 A4 13 03 00.

The values 000D and 0007 are no longer in the display. This is not a result
of the POP instruction; it's because DEBUG is also using the stack.
Finally, we trace the RET, .

Chapter 8 The Stack and Introduction to Procedures 157

T L S)
2X=0007 BX=000D CX<=001C Dx=005B SP=0100 BP=0000 SI=0000 DI=0000
DS=176F ES=176F SS=1781 CS=177F 1IP=0003 NV UP EI PL 2R AC PE CY

177F:0003 B44C MOV AH, 4C

RET causes IP to get 0003, the return address to MAIN. SP goes back to 100h,
its orjginal value. To finish executing the program, we just type G:

-G . ..
Program terminated normally

and we exit DEBUG by typing Q (quit)._

-Q

>C

Summary

¢ The stack is a temporary storage area used by both application
" progtams and the operating system.

*. The stack is a last-in, first-out data structure. SS:SP points to the
top of the stack.

e The stack-aitering instructions are PUSH, PUSHE POP, and POPE.
PUSH adds a new top word to the stack, and POP removes the
top word. PUSHF saves the FLAGS register on the stack and POPF
puts the stack top into the FLAGS register.

e SP decreases by 2 when PUSH or PUSHF is executed, and it in-
creases by 2 when POP or POPF is executed. SP is initialized to
the first word after stack segment when the program is loaded.

* A procedure is a subprogram. Assembly language programs are

© typically broken into two procedures, One of the procedures is
the main procedure, which contains the entry point to the pro-
gram. Procedures may call other procedures, or theinselves.

e There ate two kinds of procedures, NEAR and FAR. A NEAR proce-
dure is in the same code segment as the calling program, and a
FAR procedure is in a different segment.

+ The CALL inslrucgion is used to invoke a procedure. For a NEAR
procedure, execution of CALL causes the offset address of the
next instruction in line after the CALL to be saved on the stack,
and the IP gets the offset of the first instruction in the procedure.

158

Exercises

* Procedures erd with a RET instruction. Its exccution causes the stack
to be popped into 1P, and control returns to the calling program. In
order for the return address to be accessible, the procedure must en-
sure that it is at the top of the stack wher RET is executed.

* la assembly language, procedures often pass data through registers.

Glossary

dircct procedure call A procedure call of form CALL name

FAR procedure A procedure that can be called by proce-
dures residing in any segment

indirect procedure call A procedure call of forny CALL addr_exp

NEAR procedure A procedure that can only be called by
another procedure residing in the same
segment

top of the stack The last word of data added to the stack

New Instructions

CALL POPF PUSHF

POP PUSH RET

Exercises
1. Suppose the stack segment is declared as follows:

.STACK 100h

a. What is the hex contents of SP when the program begins?
b. What is the maximum hex number of words that the stack
may contain?
2. Suppose that AX = 1234h, BX = 5678h, CX = 9ABCh, and SP =
100h. Give the contents of AX, BX, CX, and SP after executing
the following instructions:

PUSH AX
PUSH BX
XCHG AX,CX
poP cX
PUSH AX.
POP :BX

3. When the stack has completely filled the stack area, SP = 0. If an-
other word is pushed onto the stack, what would happen to SP?
What might happen to the program?

4: .Suppose a program contains the lines

CALL PROC1 .
. MOV AX, BX -
_ and (a) instruction MOV AX,BX is stored at 08FD:0203h, (b) PROC1
~is a NEAR procedure that begins at 08FD:300h, (c) SP = 010Ah.
© What are the contents of IP and SP just after CALL PROC1 is exe-
cuted? What word is on top of the stack?

Chapter 8 The Stack and Introduction to Procedur>s 159

-S. Suppose SP = 0200h, tob of stack = 012Ah. What are the contents
of IP and SP _
a. after RET is executed, where RET appears in a NEAR procedure?
b. " after RET 4 is executed, where RET appears in a NEAR procedure”
6." Write some code to
" a. place the top of the stack into AX, without changing the
stack.contents. . *»
“b. place the word that is below the stack top into CX, without
. changing the stack contents. You may use AX.

* c¢. exchange the top two words on the stack. You may use AX

and BX.",

7. 'Procedures are supposed to return the stack to the :alling pro-
gram in the same condition that they received it. However, it
may be useful-to have procedures that alter the stack. For exam-
ple, suppose we would like to write a NEAR procedure
SAVE_REGS that saves BX,CX,DX,SI,DI,BP,DS, and ES on the
stack. After pushing these. registers, the stack would look like this:

ES .content

DX content
CX content
BX content
return_address (offset)

Now, unfortunately, SAVE_REGS can't return to the calling pro-

gram, because the return address is not at the top of the stack.

a. Devise a way to implement a procedure SAVE_REGS that gets
around this problem (you may use AX to do this).

b. Write a procedure RESTORE_REGS that restores the registers
that SAVE_REGS has saved.

Programming Exercises

8. Writea p'ro'gra'm that lets the user type some text, consisting of
- words separated by blanks, ending with a carriage return, and dis-
plays the text in the same word order as entered, but with the let-
~ ters in each word reversed. For example, “this is a test” becomes
“siht si a tset”. Hint: modify program PGM8_2.ASM in section 8.3.
9.; A problem in elementary algebra is to decide if an expression con-
taining several kinds of brackets, such as, [,},{,},(,), is correctly
‘bracketed. This is the case if {a) there are the same number of left
* ‘and right brackets of each kind, and (b) when a right bracket ap-
pears, the most recent preceding unmatched left bracket should
be of the same type. For example,”

‘@+[b-x(d-e)}]+f) is correctly bracketed, but
(a+[b—_lcx.(d-e)) }+f) is not

. Correct bracketing can be decided by using a stack. The expres-
~..sion is scanned left to right. When a left bracket is encountered,
it is pushed onto the stack. When a right bracket is encountered,

160

Exercises

10.

the stack is popped (if the stack is empty, there are too many
right brackets) and the brackets are compared. If they are of the
same type, the scanning continues. If there is a mismatch, the ex-
pression is incorrectly bracketed. At the end of the expression, if
the stack is empty the expression is correctly bracketed. If the
stack is not empty, there are too many left brackets.

Wirite a program that lets the user type in an algebraic expression,
ending with a carriage return, that contains round (parentheses),
square, and curly brackets. As the expression is being typed in,
the program evaluates each character. If at any point the expres-
sion is incorrectly bracketed (too many right. brackets or a mis-
match between left and right brackets), the program tells the user
to start over. After the'carriage return is typed, if the expression is
correct, the program displays “expression is correct.” If not, the
program displays “too many left brackets”. In both cases, the pro-
gram asks the user if he or she wants to continue. If the user
types ‘Y’, the program runs again. .

Your program does not need to store the input string, only check
it for correctness.

Sammple execution:

ENTER AN ALGEBRAIC EXPRESSICN:

(a + b)]TCO MANY RIGHT BRACKETS. BEGIN AGAIN!
ENTER AN ALGEBRAIC EXPRESSION

ta + [b - ¢) % d)

EXPRESSION IS CORRECT

TYPE Y TF YDt W NT TO CCWTINUE:Y

ENTER AN Al GFEERATL EXPRESCICN:

fa + b x (¢ - d) - e}ERACKET MISMATCIi. BEGIN AGAIN!
ENTER AN ALGEERAIC EXIRESSICN:
(a + (b - {c ~ (d - e) }] + 1)

T SRACKETS. BEGIN AGAIN!
CERAIC EXPKRESSION:

TOC MANY LE
ENTER AN AL
I'VE HAD ENf
EXPRESSICON IS CCRRECT

TYPE Y IF YQOU WANT TO CONTINUE:N .

The following method can be used to generate random numbers
in the range 1 to 32767.

Start with any number in this range.

Shift left once.

Replace bit O by the XOR of bits 14 and 15.
Clear bit 15. .

Write the following procedures:

a. A procedure READ that lcts the user enter a binary number

and stores it in AX. You may use the code for binary input
given in section 7.4.

b. A procedure RANDOM that receives a number in AX and re-
turns a random sumber in AX.

c. A procedure WRITE that displays AX in binary. You may use
the algorithm given in section 7.4.

Write a program that displays a ‘?*, calls READ to read a binary

number, and calls RANDOM and WRITE to compute and display
100 random numbers. The numbers should be displayed four per
line, with four blanks separating the numbers.

Multiplication-and
Division Instructions

Overview

_ In.Chapter 7, we.saw how to do multiplication and division by
shifting the bits in a byte or word. Left and right shifts can be used for
multiplying and dividing by powers of 2. In this chapter, we introduce in-
structions for multiplying and dividing any numbers.

-, .The process of multiplication and division is different for signed and
unsigned numbers, so there are different instructions for signed and unsigned
multiplication and division. Also, these instructions have byte and word
forms. Sections 9.1 through 9.4 cover the details.

One of the'most useful applications of multiplication and division

< s

“is to implement decimal input and output. In section 9.5, we write procedures

to carry out these operanons .This application greatly extends our program’s
1/0.capability.

9.1
MUL and IMUL

Signed-Versus-Unsigned Muitiplication

In :binary. multiplication, signed.and unsigned numbers must be
treated differently. For example; suppose we want to multiply the eight-bit
numbers 10000000-and 11111111. Interpreted as unsigned numbers, they
represent ‘128 and 255; respectively. The product is 32,640 =
0111111110000000b. However, taken as signed numbers, they represent -128
and -1, respectively, and the product is 128 = 0000000010000000b.

Because signed and unsigned multiplication lcad to different re-
sults, there.are two multiplication instructions: MUL (multiniv) for unsigned

© 161

Personal
Highlight

162 9.1 MUL and IMUL

multiplication and IMUL (integer multiply) for signed multiplication. These
instructions multiply bytes or words. If two bytes are multiplied, the product *
is ¢ word (16 bits). If two words are multiplied, the product is a doubleword

(32 bits). The syntax of these instructions is
MUL source
and

IMUL source

' .
Byte Form'
For byte m{xitiplication one number is containied in the source and

the other is assumed to be in AL. The 16-bit product will be in AX. The
source may be a byte reglster or memory byte but not a constant.

Word Form

For word multiplication, one number is contained in the source and
the other is assumed to be in- AX. Fhe most-significant 16 bits of the
doubleword product will be in DX, and the least significant 16 bits will be
in AX (we sometimes write this as DX:AX). The source may be a 16-bit register
or memory word, but not a’constant.

For multiplication of posmve numbers (0 in the most significant
bit), MUL and IMUL give the same resu]t

Effect of MUL/IMUL on the status flags

SF, ZF; kF,PF: v undefined
CE/OF:
after MUL, CF/OF = 0 if the upper half of the result is’
: zero.
= 1 otherwise.
After IMUL, CF/OF = 0 if the upper half of the result is the

sign extension of the lower half (this
means that the bits of the upper half
are the same as the sign bit of the
lower half).

= 1 otherwise.
For both MUL and IMUL, CF/OF =1 means that the product is too big to
fit'in"the lower half of the destmatnon (AL for byte multiplication, AX for
word multiplication).

Examples

To iilustrate MUL and IMUL, we will do several examples. Because-
,hex multiplication‘is vsually difficult to do, we’ll predict the product by
converting the hex values of multiplier and multiplicand to decinial, doing ™
decimal multiplication, and converting the product back to hex.

-Examplec 9.1 Suppose AX contains .l and BX contains FFFFh:

Instruction” Decimal product .- Hex product DX AX CF/OF
oL Bx 655357 M 7 " OOOCFEFF 0000 FFFF 0
IMUL BX -1 "' FFFFFFFF FFFF FFFF 0

Chapter 9 . Multiplication and Division instructions 163

For MUL, DX =0, so CF/OF = 0.

For IMUL, the signed interpretation of BX is -1, and the product is
aiso -1. In 32 bns, this is FFFFFFFFh. CHO} =0 beuuse DX is the sign
extensxon of AX. -

"

_ Example 9.2 Suppose AX contains FFFFh and BX contains FFFFh:

Instruction .Decimal product Hex product DX AX CF/OF

MUL BX 4294836225 FFFEOOO FFFE 0001 1
IMUL BX 1 00000001 0000 0001 O

For MUL, CF/OF = 1 because DX is not 0. This reflects the fact that
the product FFFEOOO1h is too big to fit in AX.
) For IMUL, AX and BX both contain -1, so the product is 1. DX has
the sign extension of AX, so CF/OF =0 .

Example 9.3 Suppose AX contains OFFFh:

" Instruction -Decimal product Hex product DX AX CF/OF
MUL AX 16769025 " 0OFFEQO1 O0FF E0OY - 1
IMUL AX 16769025 OOFFEQO1 00FF E0O1 1

Because the msb of AX is 0, both MUL and IMUL give the same product.
Because the product is too big to fit in AX, CF/OF =

Example 9.4 Supbose AX contains 0100h and CX contains FFFFh:

Instruction Decimal product Hex product DX AX CF/OF
MUL CX 16776960 OOFFFFOO OOFF FFOO 1
IMUL CX -256 FFFFFFOO FFFF FFOO o

For MUL, the product FFFFQO is obtained by attaching two zeros to the
source value FFFFh. Because the product is too big to fit in AX, CF/OF = 1.

For IMUL, AX contains 256 and CX contains -1, so the product is
-256, which may be expressed as FFOOh in 16 bits. DX has the sign extension
of AX, so CF/OF = 0. -

Example 9.5 Suppose AL contains 80h and Bl. contains FFh:

Instruction Decimal product "Hex product AH AL CF/OF
MUL BL 128 7F80 7F 80 1
IMUL BL 1281, 0080 00 80 1
For byte multiplication, the 16-bit product is contained in AX.

I~or MUL, the’ product is 71‘80 Because the high eight bits are not 0,
CF/OF = -
. F or.lMUl_., we have a curious situation. 80h = -128, F¥h = -1, so the

product is 128 = 0080h. AH does not have the sign extension of AL, so CF/OF

= 1. This reflects the fact that AL does not contain the correct answer in a
signed sense, because the signed decimal interpretution of 80h is -128.

164 9.2 Simple Applications of MUL ana IMUL

2.2 - ' :
Simple Applications’ To get used to programming with MUL and IMUL, we’ll show how
of MUL and IMIUL some simple operations can be carried out with these instructions.

Exam;ile 9.6 Translate the high-lével language assignment statement A
= 5 x A - 12 x B into assembly code. Let A and B be word variables, and
suppose there is no overflow. Use IMUL for multiplication.

Solution:

MOV AX,5 , JAX = S

IMUL A) ;AX = S x A
MOV A,AX ;A = 5 X A
MOV AX,12 ;AX = 12
IMUL B ;AX = 12 x B

SUB A,AaX , JA = 5‘x A - 12 x B

Example 9.7 Write a procedure FACTORIAL that will compute N! for a
positive integer N. The procedure should receive N in CX and return N!
in AX. Suppose that overflow does not occur.

Solution: The definition of N! is

Nl=1ifN=1
AaNX(N-1)x(N-2)x'..x1ifN>1

Here is an algorithm: -

product = 1
term = N
FOR N times DO
product = product x term
term = term - 1
ENDFOR

It can be coded as follows:

FACTORIAL PROC
,;computes N!'
;input: CX = N
ioutput: AX ;‘N!

MoV AX,1 ° “;AX holds ‘product
TOP: - .
MUL CX ;product = product x term
= ' . LoOP TOP)
- ty . , RET :
FACTCRIAL . ENDP

Heré CX-is both idop counter and term; the LOOP instruction automatically
*decrements it "on each itération through the loop. We assume theé product
does not overflow 16 bits.’

Chapter 9 Muiltiplication and Division Instructions 165

9.3 .
DIV ‘and IDIV

_ When division is performed, we obtain two results, the quotient and
the remainder. As with multiplication, there are separate instructions for
unsigned and signed division; DIV (divide) is used for unsigned division
and IDTV-(integer divide)-for signed division. The syntax is

DIV divisor

L2 B

‘and ~
IDIV divisor

These instructions divide 8 (ox 16) bits into 16 (or 32) bits. The quotient and
remainder have the same size as the divisor.

.
.- Byte Form

In this form, the divisor is an 8-bit register or memory byte. The
16-bit dividend is assumed to be in AX. After division, the 8-bit quotient is
in AL and the 8-bit remainder is in-AH. The divisor may not be a constant. -

Word Form
Here the divisor is a 16-bit register or memory word. The 32-bit
“dividend is assumied to be in DX:AX, After division, the 16-bit quotient is
in AX and the 16 -bit remainder is in DX. The divisor may not be a constant.
For signed division, the remainder has the same sign a: the dividend.
If both dividend and divisor are positive, DIV and IDIV give tiie same result.
4

The effect of DIV/IDIV on the flags is that all status flags are undefined.

* Divide Overflow

It is possxble that the quotient will be too big to fit ini the specmed
destination (AL or AX). This can happen if the divisor is nuch smaller than
the dividend. When this happens, the program terminates (as shown later)
and the system displays the message “Divide Overflow”.

Example 9.8 Suppose DX contains OOOOh AX contins OOOSh and BX
‘contains 0002h.

(]

.Insrruction,w- .»; Decimal~ . Decimal - AX DX
S .i quotient:. . remainder

DIV BX 2 S 1 0002 0001
IDIV BX 2 1 - 0002 0001

Dividing S by 2 yields a quotient of 2 and a remainder of 1. Because both -
dividend and divisor are positive, DIV and IDIV five the same results.:

Example 9.9 Suppose DX contains 0000h, AX contains 0005h, and BX
contains FFFEh.’ :

166 9.4 Sign Extension of the Dividend

Instruction Decimal Decimal AX DX
quotient remainder

DIV BX 0 S 0000 0005

IDIV BX -2 1 FFFE 0001

For DIV, the dividend is § and the divisor is FFFEh = 65534; S divided
by 65534 yields a quotient of 0 and a remainder of 5.

For IDIV, the dividend is 5 and the divisor is FFFLh = -2; 5§ divided
by -2 gives a quotient of -2 and a remainder of 1. -

Example 9.10 Suppose DX contains FFFFh, AX contains FFFBh, and BX
contains 0002.

Instruction Decimal Decimal AX DX
quotient remainder
IDIV BX -2 -1 FFFE " FFFF
DIV BX DIVIDE
OVERFLOW

For IDIV, DX:AX = FFFFFFFBh = -5, BX = 2. -5 divided by 2 gives a
quotient of -2 = FFFEh and a remainder of -1 = FFFFh.

For DIV, the dividend DX:AX = FFFFFFFBh = 4294967291 and the
divisor = 2. The actual quotient is 2147483646 = 7FFFFFFEh. This is too big
to fit in AX, so the computer prints DIVIDE OVERFLOW and the program
terminates. This shows what can happen if the divisor is a lot smaller than
the dividend. :

Example 9.11 Suppose AX contains O0FBh and BL contains FFh.

Instruction Decimal Decimal AX Al
quotient remainder
DIV BL 0 251 F8 00
IDIV EL DIVIDE)
OVERFLOW

For byte division, the dividend is in AX; the quotient is in AL and
the remainder in AH.

For DIV, the dividend is O0FBh = 251 and the divisor is FFh = 256.
Dividing 251 by 256 yields a quotient of 0 and a remainder of 251 = FBh.

For IDIV, the dividend is O0FBh = 251 and the divisor is FFh = -1.
Dividing 251 by -1 yields a quotient of -251, which is too big to fit in AL,
so the message DIVIDE OVERFLOW is printed.

9.4
'Sign Extension of
the Dividend

Word Division

In word division, the dividend is in DX:AX even if the actual divi-
dend will fit in AX. In this case DX should be prepared as follows:
1. For DIV, DX should be cleared.

2. For IDIV, DX shouid be made the sign extension of AX. The instruc-
tion CWD (convert word to doubleword) will do the extension.

Chapter 9. Multiplication ar¥f Division Instructions 167

Example 9.12 Divide ~1250 by 7:

.
. %

Solution:

MOV AX,-1250 % aX gets dividend

CWD ;Extend sign to DX

MOV BX,7 ;BX has divisor

IDIV BX ;AX gets quotient, DX has remeinder

Byte Division
:Ih' byte divisidn.,_the:aividend is in AX. If the actual dividend is a
byte, then AH should be prepared as follows:
1. "For DIV, AH should be cleared.

2 Fof‘lDlV,'AH should the sign extension of AL. The instruction
CBW (convert byte to word) will do the extension.

Example 9.13 Divide theé signed value ‘of the byte vuriable XBYTFE by ~7.

Solution:

MOV AL, XBYTE - " ;AL has dividend

CBW o sExtend sign to AR
MOV BL, -7 - 7 ;BL- has divisor
IDIV°BL ' # ;AL has quotient, AH has remainder

There is no effect of CBW and CWD on the flags.

9.5
Decimal Input and
Output Procedures

Even though the computer represents everything in binary, it's more
convenient for the uscr to see input and output expressed in decimal. In this
section, we write procedurcs for handling decimal 1/0.

On input, if we type 21543, for example, then we are actually typing
a character string, which must be converted internally to the binary equiv-
alent of the decimal integer 21543. Conversely on output, the binary con-
tents of a register or mémory location must be converted to a character string
representing a decimal integer before being printed.

Decimal Output

We will write a procedure OUTDEC to print the contents of AX as
a signed decimal integer. It AX >= 0, OUTDEC will print the contents in
decimal; if AX < 0, OUTDEC will print a minus sign, replace AX by -AX (so
that AX now contains a positive number), and print the contents in decimal.
Thus in either case, the problem comes down to printing the decimal equiv-
alent of a positive binary number. Here is the algorithm:

Algorithm for Decimal’Output
1. IF AX < O /* "AX hclds output value */

2. <THEN- -

By

168

9.5 Decimal Input and Output Procedures

print a minus sign
replace AX by its two’s complement
END_IF)
Get the digits in AX’s decimal representation

A A

Convert these digits to characters and print them

To see what line’6 entails, suppose the content of AX, express'ed in
decimal, is 24168. To get the digits in the decimal representation, we can
proceed as follows:

Divide 24618 by 10. Quotient = 2461, remainder = 8
Divide 2461 by 10. Quotient = 246, remainder = 1
Divide 246 by 10. Quotient = 24, remainder = 6
Divide 24 by 10. Quotient = 2, remainder = 4
Divide 2 by 10. Quotient = 0, remainder = 2

Thus, the digits we want appear as remainders after repeated division by 10.
However, they appear in reverse order; to turn them around, we can save
thenrt on the stack. Here's how line 6 breaks down:

Line 6

count = 0 /* will count decimal digits */
REPEAT
divide quotient by 10
.push remainder on the stack
" gcount = count + 1
UNTIL quotient = 0

where the initial value of quotient is the original contents of AX.

Once the digits are on the stack, all we have to do is pop them off,
convert them to characters, and print them. Line 7 may be expressed as
follows:

Line 7

FOR count times DO
pop a digit from the stack
convert it to a character
output the character
END_FOR

Now we can code the procedure as follows:

Program Listing PGM9_1.ASM -

1: OUTDEC -PROC

2: ;prints AX as a signed decimal :Integer
3: input: AX

4: ;6utput: none

St PUSH AX . ;save registers
6: - PUSH BX

7: PUSH CX

8: ' PUSH .DX !

9: if AX'"< O)

10: OR AX, AX JAX < 0?

11: JGE @END_IF1 sNO, > 0

12: ;then

Chapter 9 Multiplication and Division Instructions 169

13: PUSH AX ;save number

14: MOV "¢ DL, ‘=’ iget ‘-’

15: MOV . 'AH,2° ;print char function
16: INT 21H ;print ' -¢

17: POP ' “AX ;get AX back

18: NEG - "AX’ JAX = =-AX .

.

19: QEND_IFl:
20: ;get decimal digits

217 . XOR **' CX,CX ;CX counts digits

22;, . MOV BX,10D +BX has divisor

23: @REPEATL: -

24: XOR DX, DX iprepare high word of dividend
25: DIV BX ;AX = quotient, DX = remainder
26: PUSH DX ;save remainder on stack

27: INC CcX ;jcount = count + 1

28: ;until-

29: OR AX, AX ;quotient = 07?

30: | JNE @REPEAT1 ino, keep going

31: ;convert digits to characters and print

32: MOV AH, 2 ;print char function

33: ;for count times do
34: @PRINT_LOOP:

35: POP DX - ;digit in DL
. 36: OR DL, 304 ;convert to character
37: INT 21H ;print digit

38: LOOP @GPRINT _LOOP ;loop until done

39: ~;end_ for

40: POP DX irestore registers
41: POP cX ’ .

42: > " POP "~ BX

43: POP AX

44: . RET

45: OUTDEC ENDP

After saving the registers, at line 10 the sign of AX is examined by
ORing AX with itself. If AX >= 0, the program jumps to line 19; if AX <0,
a minus sign is prinied and AX is replaced by its two’s complement. In either
case, at line 19, AX will contain a positive number.

At line 21, OUTDEC prepares for division. Because division by a
constant is illegal, we must put the divisor 10 in a register.

' The REPEAT loop in lines 23-30 will get the digits and put them on
the stack. Because we'll be doing unsigned division, DX is cleared. After
division, the quotient will be in AX and the remainder in-DX-(actually it is
in Dl,, because the remainder is between 0 and 9). At line 29, AX is tested
for 0 by ORing it with itself; repeated division by 10 guarantees a zero quo-
tient eventually. ., Lt . R .

The FOR loop in lines 34-38 gets the digits from the stack and prints
them. Before a digit is printed, it must first be converted to an ASCII character

(line 36).] C

The INCLUDE Pseudo-op

" Wean verify OUTDEC by placing it inside a short program and run-
ning the program inside DEBUG. To insert OUTDEC into the program without
having to type it in, we use the INCLUDE pscudo-op. It has the form

INCLUDE filespec

170

9.5 Decimal Input and Qutput Procedures

where filespec identifies a file (with optional drive and path). For example’
the file containing OUTDEC is PGM9_1.ASM. We could use

INCLUDE A:PGM9_1.ASM

When MASM encounters this line during assembly, it retrieves file
PGM9_1.ASM from the disk in drive A and inserts it into the program at the
position of the INCLUDE directive. This file is on the Student Data Disk that
comes with this book.

Here is the testing program:

Program Listing PGM9_2.ASM
TITLE PGM9_2: DECIMAL OUTPUT
.MODEL SMALL
.STACK 100H
.CODE
MAIN PROC

CALL OUTDEC

MOV AH, 4CH

‘INT 21H ;DOS exit
MAIN ENDP
INCLUDE A:PGM9_1.ASM

END MAIN

To test the program, we’ll enter DEBUG and run the program twice,
first for AX = -25487 = 9C71h and then for AX = 654 = 28Eh:

C>DEBUG
~-RAX

A¥ Q000
:9C71
-G
-25487
2recgram
-RAX

AX 9C71
:28E

-G

654

PGM9_2 .EXE

i

(first output)

terminated normally

(second output)

Note that after the first run, DEBUG automatically resets IP to the beginning
of the program. .

t

Decimal Input

To .do decimal input, we need to convert a string of ASCII digits to
the binary’ representatlon of a decimal integer. We will write a procedure
INDEC to do this.

In procedure ‘OUTDEC, to output the contents of AX in decimal we

: repeatedly divided AX by 10. For INDEC we need repeated multiplication by

10. The basic idea is the following:

Chapter 9 Multiplication and Division Instructions 171

Decimal Input Algorithm (first version)

total = 0
read an ASCII digit-
REPEAT .o

convert character to a binary value
total = 10 x total + value
.read a character
UNTIL character is a carriage return
- .
For example, an input of 123 is processed as follows:

total = 0

read ‘1’ .

convert 'l’, to 1°

total = 10 x 0 + 1 = 1
read ‘2’ b
convert ‘2’ to 2

total = 10:x 1 + 2= 12
read ‘3

convert ‘3’ to 3.

total = 10 x 12 + 3 = 123

We will design INDEC so that it can handle signed decimal integers in the
range -32768 to 32767. The program prints a question mark, and lets the
-user enter an optional sign, folléwed by a string of digits, followed by a
carriage return. If the user enters'a character outside the range “0” ... "“9",
the procedure goes to a new line and starts over. With these added require-
ments, the preceding algorithm becomes the following:

-Decimal Input Algorithm (second version)

Print a question mark
total = 0
negative = false
Read a character
CASE character OF

‘*-’: negative = true

read a character

‘+’; read a“character
END_CASE
REPEAT -
'""IF character ‘is not betwéen ‘0’ and ‘9’
* " THEN

* go to beginning’

ELSE ° ;'
' * convert character to a binary value

total = 10 x total + value

‘ENp_IF E ’

read a character
UNTIL character is a carrilage return
I¥ negative = true

“THEN
T total = -total
ENDIF

“Note: A jump like this is not really “structured pngamnung.” Sometimes it’s necessary to
Vviolate structure rules for the sake of effidency; for example, when emmor conditions occur,

172 9.5 Decimal Ipput and Output Procedures

The algorithm can be coded as follows:

Program Listing PGM9_3.ASM

1: INDEC PROC . »

2: ;reads a number in range -32768 to 32767
3: ;input: none B

4: ;output:AX = binary equivalent of number

5: PUSH BX . - ;save registers used
6: PUSH CX

7: PUSH DX

8: ;print prompt

9: @BEGIN:

10: MOV AH, 2

11: MOV DL, ' 2!

12: INT 21H ;print ‘2’

13: ;total = 0)

14: ' XOR BX,BX ;BX holds total

15: ;negative = false

16:; XOR CX,CX ;CX holds sign

17: :read a character '

18: B MoV AH,1

19: INT 21H ;character in AL

20: ;case character of

21: CMP AL,’-’ sminus sign?

22: JE @MINUS ;yes, set sign

23: CMP AL, '+’ ;plus sign

24: JE @PLUS ;yes, get another character
25: JMP @REPEATZ2 ;start processing characters
26: @MINUS:

27: MOV cX,1 ;negative = true

28: @PLUS: .

29: INT 218 ;xead a character

30: ;end_case
31: QREPEATZ2:

32: ;if character is between ‘0’ and ‘9’

33: cMP AL,’0Q’ ;character >= ‘0’'?

34: JNGE @NOT_DIGIT :;illegal character

35: CMP AL, "’ 9’ ;character <= ‘9°?

36: JNLE @NOT_DIGIT ;no, illegal character
37: ;then convert character to a digit

38: AND AX, 000FH ;convert to digit

39: PUSH AX ;save on stack

40: ;total = total x 10 + digit

41: MoV AX, 10 iget 10

42 MUL BX ;AX = total x 10

43: popP BX ;retrieve digit

44: ADD BX, AX ;total = total x 10 + diyit
45: ;read a character

46: MOV AH, 1

497: INT 21H .

48: CMP AL, ODH ;carriage return?

49: JNE @REPEAT2 ;no, keep going

50: ;until CR '

Sl: MOV AX, BX ;store number in AX

52: ;1if negative
53: OR cX,CX ;negative number

Chapter 9 Multiplication-and Division Instructions 173

54: JE QEXIT ;no, exit -
55:- ;then .) .
563 NEG AX ;yes, negate

57: ;end_if
58: BEXIT: .. .
59: POP DX . srestore registers

.

60: POP CX
6l: POP BX e
62: RET ' ;and return-

63: ;here if illegal character entered
64: @NOT_DIGIT:

65: ' MOV AH, 2 ;move cursor to a new line
66: Mov DL, ODH T

67: . INT 214

“68: MOV DL, 0AH

69: INT 21H

70:.0:" " amp @BEGIN ;go to beginning

71: INDEC ENDP

The procedure begins by saving the reglsters and printing a “?”. BX
holds the tota); in line 14, it is cleared.
CX is used to keep track of the sign; 0 mcans a positive number and
1 means negative. We initially assume the number is positive, so CX is cleared
at line 16.
’ The first character is read at lines 18 and 19. It could be “+”, “~" or
a digit. If it's a sign, CX is adjusted if necessary and another character is read
(line 29). Presumably this next character will be a digit.)
At line 31, INDEC enters the REPEAT loop, which processes the cur-
rent character and reads another one, until a carriage return is typed.
At lines 33-36, INDEC checks to see if the current character is in
fact.a digit. If not, the procedure jumps to label @NOT_DIGIT (line 64),
moves the cursor to a new line, and jumps to @BEGIN. This means that the
user can 't escape from the procedure without entering a legitimate number.
**" " If the current charactér in AL is a decimal digit, it is converted to a
bmary value (line 38). Then the value is saved on the stack (line 39), because
AX is'used when the total is multiplied by 10.
{7 " 1n lines 41 and 42, the total in BX is multiplied by 10. The product
will be in DX:AX; however, DX will contain 0 unless the number is out of
.-range (more about this later). At line 43, the value saved is popped from the
- stack and 10 times total is added to it.
" Atline 51, INDEC exits the REPEAT loop with the number in BX.
: After moving it to AX, INDEC checks the sign in CX; if CX contains 1, AX
is_nlcgated before the procedure exits.

Testing INDEC ‘

. Wecan test INDEC by creating a program that uses INDEC for input
and OUTDLC for output.

Program Listing PGM9_4.ASM
TITLE, PGM9. 4: DECIMAL 1/0
.MODEL SMALL

.STACK

.CODE

MAIN. PROC

174

9.5 Decimal Input and Output Procedures

;input & number
CALL INDEC - snumber in AX

PUSH AX ;save number
;move cursor to a new line
MOV AH, 2
MOV DL, ODH
INT 21H
MOV DL, OAH
INT 21H
;output the number
pop AX ;retrieve number
CALL QUTDEC
;dos exit
MOV AH, 4CH
INT 21H
MATN ENDP
INCLUDE A:PGM9_1.ASM ;include OUTCEC
INCLUDE A:PGM9_3.ASM ;include INDEC

END MAIN

Sample execution:

C>PGM9_4
721345
213450vertiow

Overflow

Procedure INDEC can handle input that contains illegal characters,
but it cannot handle input that is outside the range -32768 to 32767. We

call this input overflow.

) Overflow can occur in two places in INDEC: (1) when total is mul-
tiplied by 10, and (2) when a value is added to total. As an example of the
first overflow, the user could enter 99999; overflow occurs when the total =
9999 is multiplied by 10. As an example of the second overflow, if the user
types 32769, then when the total = 32760, overflow occurs when 9 is added.
The algorithm can be made to perform overflow checks as follows:

Decimal input Algorithm (third version)

Print a question mark
total = O
negative = false
Read a character
CASE character OF
‘-’ negative = true
read a character
‘+’: read a character
END_CASE
REPEAT
IF character is not between ‘0’ and

Chapter 9 Multiplication and Division Instructions 175

THEN.,
.99 &o beginning
,ELSE g, .
convert character ,to. a value
total -= 10 x total
IF overflow
THEN

<

-~ go {to .beginning

- ELSE
, total = total + value

IF overflow..

THEN
go to beginning

" END_IF

" END_IF

ENDHIF

read-a character
UNTIL .character.is a.carriage return
IF negative = E‘Irue ’

THEN

total = -total
END "IF™* BN

The imﬁlememation of this afgorithm is left to the student as an exercise.

Summiry

“The multiplication instructions are MUL for unsigned multiplica-

tlon and IMUL for sxgned multiplication.

For byte multnphcatlon, AL holds one number, and the other is in
,an 8-bit register or memory byte. For word multiplication, AX holds
“one number, and th¢ otfer is in an 16-bit register or memory word.

*. | For byte multiplication,:ithe 16-bit product is in AX. For word’

multiplication, the 32-bit product is in DX:AX.

ie' 'The division instructions are DIV for unsigned division and IDIV

for signed division.
The divisor may be a memory or register, byte or word. For divi-

.sion by a byte, the dividend is in AX; for division by a word, the
d1v1dend 15 m DX AX

After byte lelSlOn AL has the quotient and AH the remainder. Af-
ter word dnvxsnon AX has the quotient and DX the remainder.

For sxgncd word dst;on, if AX contains the dividend, then CWD
'can be used to extend the sign into DX. Similarly, for byte divi-
sion, CBW extends the sign of AL into AH. For unsigned word di-
'vision, if AX contains.the dividend, then DX should be cleared.
For unsigned byte division, if AL contains the dividend then AH
should be cleared

Multxply and dmde instructions are useful in doing decimal 1/0.

The INCLUDE pseudo-op provides a way to insert text from an ex-
ternal file into a program.

176

Exercises

New Instructions

CBW
CWD

DIV IMUL
IDIVI MUL

New Pseudo-Ops

INCLUDE

Exercises

1. If it is a legal instruction, give the values of DX, AX, and CF/OF
after each of the following instructions is executed.

a.
b.
c
d.

e.

MUL BX, if AX contains 0008h and BX contains 0003h
MUL BX, if AX contains 00FFh and BX contains 1000h
IMUL CX, if AX contains 0005h and CX contains I'FFFh

IMUL WORDI, if AX contains 8000h and WORD1 contains
FFFFh
MUL 10h, if AX contains FFEOh

2. Give the new values of AX and CF/OF for cach of the following
instructions.

a.
b.
c.
d.

MUL BL, if AL contains ABh and BL contains 10h

IMUL BL, if AL contains ABh and BL contains 10h

MUL AH, if AX contains 01ABh

IMUL BYTE], if AL contains 02h and BYTE1 contains FBh

3. Give the new values of AX and DX for cach of the following in-
,.structions, or tell if overflow occurs

a.
b.
C.

3 o

.4

DIV BX, if DX contains 0000h, AX contains 0007h, and BX
contains 0002h

DIV BX, if DX contains 0000h, AX contains FFFLh, and BX
contains 0010h .

IDIV BX, if DX contains FFFFh, AX contains FFFCh, and BX

‘contains 0003h " ° :
biv li‘X, same values as part ¢.

4! " Give the new values of AL and AH for each of the following in-

[aK

a.
b.

structions, or tell if overflow occurs

DIV BL, if AX comains 000Dh and BL contains 03h
IDIV BL, if AX contains FFFBh and BL. contains FEh

,c. DIV BL, if AX contains OOFEh and BL contains 10h
d. " DIV BL, if AX contains FFEOh and BL contains 02h
5. Glve the value of DX after executing CWD if AX contains
a.. 7E02h ‘ ‘
¥~ “b.78ABCh
c. 1ABCh

Chapter 9 Multiplication and Division Instructions 177

6. Give the vatue of AX after ekecuting CBW if AL contains

‘a’ FOh ,
“b. SFh ‘
c. 80h

7. Write asscmbly code for each of the following high-level lzaguage

«~ assignment statements. Suppose that A, B, and C a:» word
ables and all products will fit in 16 bits. Use IMUL for multiptica
on. It's not necessary to preserve the contents of variabics A, B,

“and C. s v
a, A <95 x A -7
b. B = (A - B)Y x (B + 10)

C. A = 6 - 9 x A
d. IF A2 + B*2 = C*2 / * where "~ denotes
exponentiation * /
THEN
set CF
ELSE
clear CF
END_IF

Programming Exercises

10.

11.

Note: Some of the following exercises ask you to use INDEC
and/ot OUTDEC for I/O. These procedures arc on the student
disk and can be inserted into your prograin by using the IN-
CLUDE pseudo-op (see scction 9.5). Be sure not to use the same
labels as these procedures, or you'll get a duplicate label assembly
error (this should be casy, because all the labels in INDEC and
OUTDEC begin with “@".

Modify procedure INDEC so that it will check for overflow.

Write a program that lets the user enter time in seconds, up to
65535, and outputs the time as hours, minutes, and seconds. Use
INDEC and OUTDEC to do the 1/0.

Write a program to take a number of cents C, 0 <= C <= 99, and
express C as hall-dollars, quarters, dimes, nickels, and pennics.
Use INDEC to enter C.

Write a program to fet the user enter a fraction of the form M/N
(M < N), and the program prints the expansion to N decimal
places, according to the following algorithm:

1. Print ™.~
Execute the following steps N times:

2. Divide 10 x M by N, getting quotient Q and rw-
mainder R.

3. Print O.
4. Replace M by R and go to step 2.

Use INDEC to read M and N.

178 Exercises

12. Write a prograrﬁ tb' find the greatest common divisor (GCD) of
two integers M and N, according to the following algorithm:

1. Divide M f>y N, getting quotient @ and remain-
der R. :

2. If R = 0, stop. N is the GCD of M and N.
3. If R <> 0, replace M by N, N by R, and repeat
step 1.

Use INDEC to enter M and N and OUTDEC to print the GCD.

Arrays and
Addressing Modes

Ovefview

In soine applications, it is necessary to treat a collection of values as
a group For example, we might need to read a set of test scores and print

. the mcdlan score. To do 50, we would first have to store the scores in as-

cending order (thls could be done as the scorcs are entered, or they could
be sorted after they are all in memory). The advantage of using an array to
store the data s that o single nane can be given to the whole structure, and
an element can be accessed by providing an index.
in sectioni 10.1 we show how onc-dimensional arrays are declared
in assembly language. To access the elements, in section 10.2 we introduce
new ways of expressing operands—the register Indirect, based and indexcd
addressing modes. in section 10.3, we use these addressing modes to sort an
array. .
A two-dlmensiohal array is a one-dimensional array whose elements
are also one-dimensional arrays (an array of arrays). In section 10.4, we show
how they are stored. These arrays have two indexes, and are most casily
manipulated by the based indexed addressing mode of section 10.5. Scction
10.6 ptovides a simple applicatiori.
+ Section 10.7 introduces the XLAT (translate; instruction. This in-
struction is useful when we want to do data conversion; we use it to vnuaie

and decode a secret message.

10.1
One-Dlmens:onal
lfrrays

A oné-dimensional array is an ordered list of clements, a1l of the

“samé type. By “ordered,” we mean that there is a first clement, second ele-

ment, third element, and so on. In mathematics, if A is an array, the elements

179

180 10.1 One-Dimensional Armrays

Figure 10.1 A .
One-Dimensional Array A

Index

1 Alt)

2 Al2)

3 Al3]

4 Al4)

5 Al
6 el |

are usually denoted by All), Af2}, A[3], and so on. Figure 10.1 shows a one-
dimensional array A with six elements.

In Chapter 4, we used the DB and DW pseudo-ops to declare dyte
and word arrays; for example, a five-character string named MSG,
MSG DB ‘abcde’
or a word array W of six integers, initialized to 10,20,30,40,50,60.
w. DW 10, 20, 30, 40,50, 60

The address of the array variable is called the base address of the array.
If the offset address assigned t0 W is 0200h, the array looks like this in
memory:

Offset address .’ ' Symbolic address Dedimal content
0200h LW 10
0202h . W+2h 20
0204h -W+dh' 30
0206h . " Wa+6h 40
0208h W+8h 50
' 020Ah 7 . W+Ah 60

' The DUP Operator
It is possible to define arrays whose elements share a common initial

“value by using the DUP (duplicate) operator. It has this form:

repeat_count DUP (value)

This operator causes value to be repcated the number of times specified by
repeat_count. For example, :

GeMIMA DW 100 DUP (0) Wy
sets up an ar}dy. of](E)Owti'grds, with each entry initialized to 0. Similarly,
DELTA DB 212 Dué (?) ‘
creates an array of 212 uninitialized bytes. DUPs may be nested. For example,

Chapter 10 Arrays and Addressing'Modes 181

[

-LINE DB s,4, 3 DUP (2, 3 DUP (0), 1)
which is equivalent to ' ‘
LINE DB 5,4,2,0,0,0,1,2,0,0,0,1,2,0,0,0,1

Location ‘of Array Elements’
PR £ R SR L U .
The address.of ;n array element may be specified by adding a con-
stant to the base address. Suppose.A.is an array and S denotes the number

of bytes in an element (S = 1 for.a byte array, S = 2 for a word array). The
position of the elements in array A can be determined as follows:

Position : Location

1 ! A

2 A=1xS$

, 3, A=2xS
‘N A=(N-1)xS

Example 10.1° Exchange the 10th-and 25th elements in a word array W.

Solution: W{10j is located at address W + 9 x 2 = W + 18 and W]|25] is
Tat W+ 24 x 2 =W + 48, 50 we can do the exchange as follows:

MOV AX,W+18 ;AX has W{1l()
XCHG W+48, AX ;AX has W[25]
MOV W+18,AX ;complete.-exchange

In many applications, we necd to perfoun some operation on each
element of an array. For example, suppose array A is a 1G-element array, and
we want to add the elements. In a high-level language, we could do it like this:

sum = 0
‘N =1
REPEAT
sum = sum + A([N]

©eN'R N 401
UNTIL N> 10 -

; . . 3 e
To code this m assembly language, we need a wav 1o nove from one array
clement to the next one. In the next section, we'll see how to accomplish
this by indirect addressing. -

10.2 :
Addressing Modes The way an operand is specified is known as its addressing mode
) The addressing modes we have used so far are (1) register mode, whict
means that an operand is a register; (2) immediate mode, when an operan-
is a constant; and (3) direct mode, when an operand is a variable. For exampl

182 10.2 Addressing Modes

MOV AX, O (Destination AX is register mode,
source 0 is immediate mode.)
ADD ALPHA, AX (Destination ALPHA is direct mode,

source AX is register mode.)

There are four additional addressing modes for the 8086: (1) Register Indirect,
(2) Based, (3) Indexed, and (4) Based Indexed. These modes are used to ad-
dress memory operands indirectly. In this section, we discuss the first three
of these modecs; they are useful in one-dimensional array processing. Based
indexed mode can be used with two-dimensional arrays; it is covercd in
section 10.5.

10.2.1
Register Indirect Mode

In this mode, the offset address of the operand is contained in a
register. We say that the register acts as a pointer to the memory location.
The operand format is
[register)

The register is BX, Si, DI, or BP. For BX, SI, or DI, the operand’s scgment
number is contained in DS. For BP, SS has the segment number.
For example, suppose that SI contains 0100h, and the word at 0100h

contains 1234h. To execute

MOV AX, [SI)

the CPU (1) examines SI and obtains the otfset address 100h, (2) uses the
address DS:0100h to obtain the value 1234h, and (3) moves 1234h to AX.
This is not the same as

MOV AX,SI
which simply moves the value of SI, namely 100h, into AX.

Example 10.2 Suppose that

BX contains 1000h Offset 1000h contains 1BACh
Sl contains 2000h Offset 2000h contains 20FEh
Di contains 3000h Ofiset 3000h contains 031Dh

where the above offsets are in the data segment addressed by DS.
Tell which of the following instructions are legal. If legal, give the
source offset address and the result or number moved.

3. MOV BX, [BX)

b. MOV CX, [SI)

¢. MOV BX, [BM]

d. ADD [SI1.(DI]
e. INC [DI]

Chapter 10 Arrays and Addressing Modes

183

Solution:

' Source offset Result
a. 1000h 18ACh
b. 2000h 20FEh
c. illegal source register {must be BX, SI, or DI)
d. illegal memory-memory

. addition

e, 3000h 031Eh

Now let’s return to the problem of adding the elements of an array.

Example 10.3 Write some code to sum in AX the elements of thé
10-element array W defined by
"w ow 10,20,30,40,50,60,70,80,90,100

Solution: The idea is to set a pointer to the base of the array, and let it
move up the array, summing elements as it goes.

XOR AX,AX ;AX holds sum
LEA SI,W - ;SI points to array W

MOV CX,10 ;CX has number of elements
ADDNOS ; :
ADD AX, (SI) ;jsum = sum + element
ADD SI,2 ;move pointer to the next
jelement
LOOP ADDMNOS ;loop until done

Here we must add 2 to SI on each trip through the loop because W is a word
array (recall from Chapter 4 that LEA moves the source offset address into
the destination).

The next example shows how register indirect mode can be used in
array processing. -. . . '

Example 10.4” Write a procedure REVERSE that will reverse an array of
N words. This means that the Nth word becomes the first, the (N-1)st
. word becomes the second, and so on, and the first word becomes the Nth

word. The procedure is entered with Sl pointing to the array, and BX has
the number of words N.

+

Solution: The idea is to exchange the 1st and Nth words, the 2nd and

(N--1)st words, and so on. The number of exchanges will be N/2 (roundec
down to the nearest integer if N is 0dd). Recall from section 10.1 that th

Nth element in a word array A has address A + 2 x (N - 1).

Program Listing PGM10_1.ASM
REVERSE PROC

;reverses ‘a word array

sinput: SI = offset of airay
i _BX = number of elements
" ;output: reversed array B

184 10.2 Addressing Modes

' PUSH AX ;save‘xegisters

PUSH BX
PUSH CX
PUSH sI
PUSH DI

;make DI point to nth word
MOV DI,SI ;DI pts to 1lst word
MOV CX, BX ;CX = n
DEC BX ;BX = npn-1
SHL BX, 1 ;BX = 2 x (n-1)
ADD DI,BX ;DX pts to nth word
SHR CcX,1 ;CX = n/2 = no. of swaps to do

;swap elements

XCHG_LOOP :
MOV AX, (ST} ;iget an elt in lower half of array
XCHG AX, [DI) ;insert in upper half
MOV [SI],AX ;complete exchange
ADD SI,2 ;move ptr
suB DI, 2 ;move ptr
LOOP XCHG_LOOQP ;loop until done
pPOP D1 ;restore registers
POP SI
POP CcX
POP BX
POP AX
RET

REVERSE ENDP

10.2.2
‘Based and Indexed _ In these modes, the operand’s offset address is obtained by adding

Addressing Modes a number called a displacement to the contents of a register. Displacement
may be any of the following:
. the offset address of a variable
a constant (positive or negative)

the offset address of a variable plus or minus a constant
If A is a variable, examples of displacements are:

A (offset address of a variable)
-2 (constant) -
A + 4 (offset address of a variable plus a constant)

The syntax ofan aperand is any of the following equivalent expressions:

[register + displacement)
{displacement + register]
[register] +. displacement
displacement + [register]
displacement {register)

The register must be BX, BP, SI, or DL If BX, SI, or Dl is used, DS containsj

the segment number of the operand’s address. If BP is used, SS has the seg-
ment number. The addressing mode is called based if BX (base register) or

Chapter 10 Arrays and Addressing Modes 185

BP (base pointer) is used; it is called indexed if SI (source index) or DI

(destination index) is used.
For example, suppose W is a word array, and BX contains 4. In the

instruction

MOV AX, W{BX])
the displacement is the offset address of variable W. The instruction moves
the element at address W + 4 to AX. This is the third element in the array.
The instruction could also have been written in any of these formg:

.
-

MOV AX, [W+BX]
MOV 2K, {BX+W]
MOV AX, W+ [BX)
MOV AX, [BX]+W
As another example, suppose SI contains the address of a word array
W. In the instruction

MOV AX, [SI+2}

the displacement is 2. The instruction moves the contents of W + 2 to AX.
This is the second element in the array. The instruction could also have been
written in any of these forms:

MOV AX, [2+S1)
MOV AX,2+(S1),
MOV AX, {SI]+2
MOV AX,2(SI)

Examble 10.5 Rework example 10.3 by using based mode.

Solution: The idea is to clear base register BX, then add 2 to it on each
trip through the summing loop. -

XOR AX,AX sAX holds sum

XOR BX, BX ;clear base register

MOV . CX, 10 ;CX has number of elements
ADDNOS : ‘

. ADD AX,W[BX] ;sum = sum + element

ADD BX,2 iindex next element

LOOP ADDNOS ;loop until done

Example 10.6 Suppose that ALPHA is declared as

ALPHA DwW 0123h,0456h,0789h, 0ABCDh

in the segment addressed by.DS. Suppose also that

BX contains 2 Offset 0002 contains 1084h
Si contains 4 - Offset 0004 contains 2BACh

Di contains 1

Tell which of the following 'instructions are legal. If legal, give the source
offset address and the number moved. .

186 10.2. Addressing. Modes
a. MOV AX, [ALPHA+BX],
b. MOV BX, [BX+2)
C. MOV CX,ALPHA([SI}
d. Mov ax,-2{s1]
€. MOV BX, [ALPHA+3+DI]
f. MOV Aax, {BX)2
8. ADD BX, [ALPHA+AX]
Solution:
Source offset Number moved
a. ALPHA+2 0456h
b. 2+2=4 2BACh
Cc. ALPHA+4 078%h
d. -2+44 =2 1084h
e. ALPHA+3+1 = ALPHA+4 0783h
f. lllegal form of source operand
g. llegal source register
The next two examples illustrate array processing by based and indexed modes.
Example 10.7 Replace each lowercase letter in the following string by
its upper case equivalent. Use index addressing mode.
MSG DB ‘this- i3 a message’
Solution:
Mov CX,17 ;no. of chars in string
XOR SI,S1 ;81 indexes a char
ToP .
CMP MSG(SI1]),’ ! sblank?
SE NEXT ;yes, skip over
AND MSG(SI]),O0DFh ;no, convert to urper cace
NENT
INC SI ;index next byvte
LOOP TOP ;loop until dcne
i0.2.3

The PTR Operator and
the LABEL Pseudo-op

You saw in Chapter 4 that the operands of an instruction must be
of the same type; for example, both bytes or both words. If one operand is
a constant, the assembler attempts to infer the type from the other operand.
For example, the assembler treats the instruction

MOV RX, 2

as a word instruction, because AX is a 16-bit register. Similarly, it treats
MOV BH, 5

as a byte instruction. However, it can’t assemble

MOV (BX]),1 ":illegal

Chapter 10 Arrays and Addressing Modes 187

" because it can’t'tell whether the destination is the byte pointed to by BX or
the word pointed to by BX. If you want the destination to be a byte, vou

can say, :
MOV BYTE PTR {BXj, 1
and if you want the destination to be a word, you say.

M2V WCRD 2TR {2Xi,1

Cxample 10.8 in the string of example 10.7, replace ti.e charactes “t”
by “T": A

Solution 1: Using register indirect xhoclc,

LEA SI,MSO ;81 pouints to M50

MOV EYTE PTR (SI1], 7’ sreplace ‘v’ ooy '3

Solution 2: Using index mode

XOK £1,S1 ;olear SI
MCV 145G is31), °T7 sreplace 't by °T
J

Here it is not necessary to use the TR operator, because MSG is a byte varizble.

Using PTR to Override a Type

- In general, the PTR operator can be used to override the declared
type of an address expression. The syntax is

type PTR-address _expression

where the type is BYTE, WORD, or DWORD (doubleword), and the address

expression has been typed as DB, DW, or DD.
For example, suppose you have the following declaration:

DOLLARS DB 1Ah
CENTS DB 52k

and you'd like to move the contents of DOLLAKS to AL and CENTS 10 AH
with a single MOV instruction. Now

MOV AX, DOLLARS ;illegal

is illegal because the-destination is a word and the source has been wped as a
byte variable. But you can override the type declaration with WORD "IR as

MCV AX, WORD PTR DUILLARPS AL = dollars, B4 = cents

and the instruction will move 521Ah to AX.

The LABEL Pseudo-Op

Actually, therc' is another way to get arousid the problem of type conflict
in the preceding example, Using the LABEL pseudo-op, we could declare
MONEY LABEL WORD
DOLLARS TR iAh
CENTS DB 52h

188 10.2 Addressing Modes

This declaration types MONLY as a word variable, and the components DOL-
LARS and CENTS as byte variables, with MONEY and DOLLARS being as-
signed the same address by the assembler. The instruction

MOV AX, MONEY ;AL = dollars, AH = cents
is now legal. So are the following instructions, which have the same effect:

MOV AL, DOLLARS
MOV AH, CENTS

Example 10.9 Supposc the following data are declared:

.DATA
A DW 1234h
B LABEL BYTE
DW 5678h
C LABEL WORD
Cl CB 9Ah
C2 DB CBCh
Tell whether the following instructions are legal, and if so, give the number
moved. ’

Instruction

MOV AX,B

MOV AH,B

MOV CX,C

MOV BX, WORD PTR B8
MOV DL, WORD PTR C
MOV AX, WORD PTR Cl

~rpoge

Solution:

illegal—type conflict
legal, 78h

legal, OBC9Ah

legal, 5678h

legai, 9Ah

legal, OBC9Ah

=m0 A n o

10.24
Segment Override

'ln register indirect mode, the pointer register BX, Sl, or DI specifies
an offset address relative to DS. It is also possible to specify an offset relative
to one of the other segment registers. The form of an operand is

segment_register:{pointer_register]
For example,

MOV AX,ES:[SI}

Chapter 10 Armrays and Addressing Modes 189

If ST contains 0100h, the source address in this instruction is E5:0100h. You
might want to do this in a program with two data segments, where ES con-
tains the segment number of the second data segment.

Segment overtides can also be used with based and indexed modes.

10.2.5
Accessing the Stack , We mentioned carlier that when BP specifies an offset in register
indirect mode, SS supplies the scgment number. This means that BP may be
used to access items on the stack..
 Example 10.10 "Move:the top three words on the stack into AX, BX,
and CX without changing the stack.
1
Solution:
MOV BP, SP ;BP points to stacktop
" MoV AX, [BP) ;move stacktop to AX
MOV BX, {BP+2) " ;move second word to BX
MOV CX, [BP+4] ";move third word to CX
A primary use of BP is to pass values to a procedure (sce Chapter 14).
10.3 .
An Application: It is much casier to locate an item in an array if the array has been
sorting an May sorted. There are dozens of sorting methods; the method we will discuss here

is called selectsort. 1t is one of the simplest sorting methods.
To sort an array A of N elements, we proceed as follows:

Pass 1. .Find the largest element among A[1} ... A[N]}. Swap it
and A[N]. Because this puts the largest element in position N, we
need only sort A[1] ... A[N-1] to finish.

Pass 2. Find the largest element among A{1] ... A[N-1). Swap it
and A[N-1]. This places the next-to-largest element in its proper

position.

Pass N-1. Find the largest element among A{1], Al2). Swap it and
Al2]. At this point Af2] ... A|N] are in thcir proper positions, so
All is as well, and the array is sorted.

Tor example, suppose the array A consists of the following integers:

Position 1. -2 -3 4 5
mnitial data 21 .5 16 40 7
pass 1 21 5 16 7 40
pass 2 7 5 .16 2 40
pass 3 7 -5 16 S 21 ~ 40
pss4 5 2 16 - 21 40

190 10.3 An Application: Sorting an Array

Selectsort algorithm

i = N :
FCR N-1 times DO

Fina the position k of the largest element -

amcng Afl)..Al1])

(*) Swap A[k] and Ali]

i o= i-1 '
END_FOR) o
Step (*) will be handled by a procedure SWAP. The code for the procedures
is the following (we'll suppose the array to be sorted is a byte array):

Program Listing PGM10_2.ASM

1: SELECT PROC * .
2: ;scrts a byte array by the selectsort method
3: ;imput: SI = array offset address
4: BX = number of elements
5: ;output: SI = offset of sorted arrcy
6 jusest SWAP
7: PUSH BX
8: PUSH CX
9: PUSH DX
10: PUSH SI
11: DEC BX JN = N-1
JE END_SCRT ;exit if l-elt array
MOV DX, S1 ;save array offset
;for N-1 times do
SORT_LOOP:
- MoV S1,DX ;S1 pts to array
MOV CX, BX ;no. of comparisons to make
MOV DI, SI ;DI pts to larygest element
MOV AL, (DI ;AL has largest element
:locate bigyest of remaining elts
FIND_BIG:
INC SI ' ;SI pts to next element
ol] 4 {Si),AL ;is new elecment > largest?
JNG NEXT ;no, go on .
25: MOV DI, ST ;yes, move DI
26€: MOV AL, IDI] ;AL has largest element
27: HNEXT:
28: LOOP FIND_BIG ;lo0op until done
29: ;swep bilgyest elt with last elt
30: CALL SwWAP : ;Swap with last elt
31: DEC BX ;N = N-1
32: JNE SORT _LOOP jrepeat if N <> 0
33: END_SORT:
34: - pop S
35: poP DX
36: POP CX
37: pop BX
38: RET
-39: SELECT “ENDP
40: SWAP ~ PROC

41: ;swaps two array elements
42: ;input: SI = one element
43: ; ‘ DI = other element

Chapter 10 Arrays and Addressing Modes 191

44: joutput: exchange- elements

45: PUSH AX ;save AX

46: MOV AL, (ST} ~~;get A1)

47: XCHG AL, [DI1) iplace in A{k]
48: MOV [SI), AL ;put Alk) in A[i]
49: POP AX ;xestore AX

50: RET

51: SWAP ENDP

. s R .) .

Procedure SELECT is entered with the array offsei address in SI, and
the number of elements N in BX. The algorithm sorts the array in N - 1
passes so BX is decremented; if it contains 0, then we have a one-¢lement
array and there is nothing to do, so the procedure exits.

In the general case, the procedure enters as the main processing loop

* (lines 15-32). Each pass through this loop placss the largest of the remaining
unsorted elements in its proper place. '

In lines 21-28, a loop is entered to find the largest of the remaining
unsorted clements; the loop is exited with DI pointing to the largest element
and SI pointing to the last element in the array. At line 30, procedure SWAP
is called to exchange the elements pointed to by SI and DI.

The procedure can be tested by inserting them in a testing program.

Program Listing PGM10_3.ASM
TITLE PGM10_3: TEST Si
.MODEL SMALL
.STACK 100H
.DATA
A DB 5,2,1,3,4
.CODE
MAIN PROC
MOV AX, @DATA
MOV DS, AX
LEA SI,A
MOV BX,5
.CALL SELECT, !
MOV AH, 4CH

“INT 21H
MAIN - ENDP
;select goes here

END MAIN

' ARer assembling and linking, we enter DEBUG and exccute down
" to the procedure <call (the addresses in the following demonstration were
- ‘determined in a previous DEBUG session):

- -6¢
AX=100D BX=0005 CX=0049 - DX=0000 SP=0100 BP=0000 SI=0004 DI=0000
DS=100D ES=0FF9 SS$S=100E CS=1009 IP=000C NV UP EI PL N2 NA PO NC

1009:000C EB0400 CALL 0013

Before calling the procedure, let’s look at the unsorted array:

The data appear in the order §, 2, 1, 3, 4. Now let’s execute SELECT:

CX=0049 DX=0000 SP=0100 BP=0000 SI=0004 DI=0005
$S~100E CS=1009 IP=000F NV UP EI PL 2R NA PE NC
MOV AH, 4C

‘and look at the array again:

It is now in’ ascending order.

A two-dimensional array is an array of array&; that is, a one-di-
mensional array whose elements are one-dimensional arrays. We can picture

192 10.4 Two-Dimensional Arrays
-pd 8
100D:0000 05 02 01 03-04
-Gr
AX=1002 BX=0005
DS=100D ES=0FF9
1009:000F BRAAC
-D4 8
100D:0000 01 02 03 04-05
104
Two-Dimensional
Arrays

the elements as being arranged in rows and columns. Figure 10.2 shows a
two-dimensional array B with three rows and four columns (a 3 x 4 array);
Bli,j] is the element in row i and column §.

How Two-Dimensional Arrays Are Stored

Because memory is one-dimensional, the elements of a two-dimen-
sional array inust be stored sequentially. There are two commonly used ways:
In row-major ordcr, the row 1 clements are stored, followed by the row
2 clements, then the row 3 elements, and so on. In column-major ordcr,
the clements of the first column are stored, followed by the second column,
third columnn, and so on. For example, suppose array B has 10, 20, 30, and
40 in the first row, 50, 60, 70, and 80 in the second row, and 90, 100, 110,
and 120 in the third row. It could be stored in row-major order as follows:

Chapter 10 Amays and Addressing ques' 193

Figure 10.2 A . .
Two-Dimensional Array 8

be processed together

[Column oo
Row 1 2 3 4
1 8(1,1) B{1.2} 8(1,3} 8[1.4]
T | emw | ema | sew | sna
1. 3| “s) 8132 7| 833 B3.4)
. R
B DW 10,20,30,40 .

DW 50, 60,70, 80
DW 90,100,110,120

or in column-major order as follows:

B DW 10,50,90
DW 20,60,100 -
DW 30,70,110

. DW 40,80,120

Most high-level language compilers store two-dimensional arrays in row-ma-
jor order. In assembly language, we can do it either way. If the elements of
a row are to be processed together sequentially, then row-major order is
better, because the next element in a row is the next memory location.
Conversely, colurnn-major order is better if the elements of a column are to

:
.

* Locating an Element in a Two-Dimensional Array

Suppose an M x N array A fs stored in row-major order, where the
size of the elements is S (§ = 1 for a bytc array, § = 2 for a word array). To
find the location of Afj, j],

1. Find where row | begins.
2. Find the location of the jth element in that row.

i Here Is the first step. Row 1 begins at location A. Because there are
N elements in each row, each of size S bytes, Row 2 begins at location A +
N x §, Row 3 begins at location A + 2 x N x S, and in géheral, Row i begins

at location A + (i- 1) x Nx S.
Now for the second step. We know from our r discussion of one-di-

. mensional arrays that the jth element in a row is stored (f - 1) x S bytes from

the beginning of the row.
Adding the results of steps 1 and 2, we get the final result:

If Ais an M x N array, with element size S bytes, stored in row-major
order, then

4] Afi, jl has address A+((l - 1) XN+ (j-1) xS
There is a similar expression for cotumn-m=zjor ordered asrays:

I Aisan M x N array, with element size S, stored in column-major
<, aer, then

@ Alijl has address A+ (i~ 1) + (j~ 1) x M) x S

194 10.5 Based indexed Addressing Mode

»

Example 10.12 Suppose A is an M x N word array stored ln row-major
order

1. Where does row i begin?
2. Where does column j begin?
3. How many bytes are there between elements in a column?

Solution:
1. Row i begins at Afi, 1]; by formula (1) its addressis A+ (1~ 1) x N
x 2,
2. Column j begins at A[l, j]; by formula (1) the address is A + (j -
1) x 2.

3. Because there are N columns, there are 2 x N bytes between ele-
ments in any given column.

10.5
Based Indexed . In this mode, the offset address of the operand is the sum of
Addr essing Mode 1. the contents of a base register (BX or B’)

2. the contents of an index register (SI or DI)

3. optionally, a variable’s offset address

4. optionally, a constant (positive or negative)
If BX is used, DS contains the segment number ot the operand’s

address; if BP is used, SS has the segment number. The operand may be
" written several ways; four of them are

1. variable[base_register) [index_register)

2. [base_register + index_register + variable + con-
stant]}

3. variable[base register + index register + constant]

4. constant [base_register + index_register + variable)

The order of terms within these brackets is arbitrary.
For example, suppose W is a word varlable, BX contains 2, and SI

contains 4. The instruction

MOV AX,W(BX] [ST) .

hoves the contents of W+2+4 = W+6 to AX. This instruction could also have
been written in either of these ways:

MOV AX, [W+BX+SI}

or

MOV AX,W[BX+SI}

Based indexed mode is especially useful for processing two-dimensionat ar-
rays as the followmg “example shows.” ™~

i

Chapter 10 Arrays and Addressing Modes 195

Example 10.13 buppose A is a §- x 7-word array stored in tow-major

" order. Write some code to (l) clear row 3, (2) clear column 4. Use based

indexed mode."

€ -

Solution:

1. From example 10.12, we know that In an M- x N-word array A, row
ibeginsat A+ (1-1) x Nx 2. Thus in a § x 7 array, row 3 begins at
A+(3-1)x7x%x2=A + 28. So we can clear row 3 as follows:

L4

MOV X, 28; BX indexes row 3

XOR S1,81 ‘ ;SI will index columns

MOV CX,7 . snumber of elements in a row
CLEAR: -

MOV A[BX)(Ss1),0 sclear A[3,3)

ADD S1,2 ;go to next column ,.

LOOP CLEAR © ;loop until done

2. Again from cxample 10.12, cohmn j beginsat A + (j - 1) x 2 in
’ -an M- x N-word array. Thus column 4 begins at A+ (4-1)x 2=
A + 6. Since A is a seven-column word array stored in row-major
order, to get to the next element in column 4 we need to add 7 x
2 = 14. We can clear column 4 as follows:

MOV SI, 6 : ;ST will index column 4.
XOK BX, BX sBX will 1ndex rows
MOV. CX, 5 . ;number of elements in a column
CLEAR: :
: MOV A[BX]|S1],0 ;clear A[i,4)
ALUD BX,1 . igo tOo next row
LOOP CLEAR ;loop until done

10.6

An Application:

Averaging Test
Scores

Suppose a class of five students Is given four cxams. The results are
recorded as follows: '

Test! _ Test2 Test 3 Test 4
MARY ALLEN -~ 67 as - 98 . 33
SCOTT BAYLIS 70 56 87 a4
GEORGE FRANK - * 82 72 89 40
BETH HARRIS 80 67 | 95 50
'SAM WONG 78 76 92 60

We will write a program to find the class average on each exam. To do this,
we sum the entries in each column and divide by 5. :

Algbn'thm
j = 4
REPEAT

_ sum the scores in column j
! divide sum by 5 to get the average in column j

IR
UNTIL § = O

Ll I I o

196 IO.S.An Application: Averaging Test Scores

)

We choosc'té start summing in iwoluinn 4 because it makes the code a little

shorter. Step 3 inay be broken down further as follows:

sum[j}] = O

io=1

FOR 5 times DO ,
sum{3i)] = sum{j} + scoreli,j]
1 = 1+1, ‘

END_FOR

Program Listing PGM10_4.ASM

0: TITLE PGM1 0__4 : CLASS AVERAGE
1: .MODEL SMALL

2: .STACK 100H

The test scores are stored in a two-dimensional array (lines 5-9).

3: .DATA
4: FIVE pw S
5: SCORES -DW 67,45,98,33 :Mary Allen
6: DW 70,56,87,44 ;Scott Baylis
.7 DW . 82,72,89,40 ;George Frank.
8: . DW 80,67,95,50 ;Beth Harris
9: . DW =~ 78,76,92,60 ;Sam Wong
10: AVG DW S DUP (0)
11: .CODE
12: MAIN PROC -
13; MOV AX, @GDATA
14: MOV DS, AX sinitialize DS
15: ;3j=4 :
16: MOV SI, 6 ;jcol index, initially col
17: REPEAT: '
18: MOV CcX,5 ;no. of rows
19: XOR BX, BX ;row index, initially 1.
20: XOR AX, AX ;col_sum, initially O
21: ;sum scores in column j
22: FOR: . T e T
23: ADD AX, SCORES (BX+SI};col_sum=col_sum + score
24: ADD BX, 8 ;index next .row ‘
25: I:OOP FOR - ;keep adding scores
26: ;endfor
27: ;compute average in.column j
28: . XOR . DX,DX .: sclear high part of divnd
29: DIV. FIVE. , ;AX = average
30: . MOV A‘IGISI],)'.X;_ ;store in array
31: suB_ SI1,2 - ;go to next column
32: ;until §=0 -~ ° ’
33: - JNL -~ REPEAT * . “;unless SI < O
. .34:+;dos exit ‘
35: MOV AH, 4CH
36: INT 218 <7
37: MAIN ENDP
38: END MAIN

In lines 22-25, a column is summed and the total placed in the array
AVG. In lines 28-30, this total is divided by 5 to compute the column average.

wnapter 10 Amays and Addressing Modes 197

8 «_Rows and columns of array SCORE are indexed by BX and S, respec-
txvely We choose to begin summing column 4; this column begins in
'SCORES+6, ‘50 S1 Is initialized to'6 (line 16). After a column is summed, SI
is decreased’by 2, until it is 0.~ -

The execution of the program may be seen in DEBUG. We execute
down to the DOS exit, then . dump .the'array AVG (the addresses in. this
demonstration were determined in a previous DEBUG session).

-G29

3

AX=4C4B BX=0028 CX=0000 DX=0002 SP=0100 BP=0000 SI=FFFE DI=0000
DS=100B ES=0FF9 SS=100F CS=1009 IP=0029 NV-UP EI NG NZ-AC PO CY

4B 00-3F 00 SC 00 2D 00

The averages are 004Bh, 003Fh, 005Ch, and 002Dh, or—in decimal 75, 63,

In some applications, it is necessary to translate data from one form

1009:0029 CD21- INT 21
-D36 3D
100B:0030
" 92, and 45.
10.7 .
The XLAT Instruction

to another. For example, the IBM PC uses ASCII codes for characters, but
IBM mainframes use EBCDIC (Extended Binary Coded Decimal Interchange
Code). To translate a character string encoded in ASCII to EBCDIC, a program
must replace the ASCII code of each character in the string with the corre-
sponding EBCDIC code. =

‘The instruction XLAT (trans!ale) is a no-operand instruction that
can be used to convert a byte value into another value that comes from a
table. The byte to be converted must be in AL, and BX has the offset address
of the conversion table. The instruction (1) adds the contents of AL to the
address in BX to produce an address within the table, and (2) replaces the
contents of AL by the value found at that address.

For example, suppose the contents of AL are in the range 0 to Fh
and we want to replace it by the ASCII code of its hex equivalent; for example,

- 6h by 036h = “6”, Bh by 042h = “B”. The conversion table is

TABLE DB 030h 031h, 0°2h 033h 034h 035,036h,037h,038h,03%h
DB 041h, 042h 043h 044h, 045h, 046h

A

For instance, to convert-OCh to “C”, we do the following:

MOV AL, OCh '__.E_n,number to convert
. LEA BX, TABLE " 4sBX has taple offset
XLAT . ,AL has ‘C’

Here XLAT computes address TABLE + Ch = TABLE + 12, and replaces the
contents of AL by the number stored there, namely 043h = “C~.
In this example if AL contained a value not in the range 0 to 15,
- XLAT would translate it ‘to some garbage value.

- 10.7 The XLAT Instruction .

Example: Coding and Decoding a Secret Message

The following program prompts the uscr to type a message, encodes
it in unrecognizable form, pnnts the coded message, translates it back, and

prints the translation.
Sample output:

ENTER A MESSAGE:,

GATHER YOUR FORCES AND ATTACK AT DAWN, (input)
ZNKBGM WULM HUMPGN XJO XKKXPD XK OXS$J, (encoded)
GATHER YOUR FORCES AND ATTACK AT DAWN, (translated)

Algorithm for Coding and Decoding a Secret Message

Print prompt -

Read and encode message

Go to a new line

Print encoded message

Go to a new line

Translate and print message

Program Listing PGM10_S5.ASM
0: TITLE PGM 10_5: SECRET MESSAGE

1:. MODEL SMALL
2: .STACK 100H
. 3: .DATA
4: ;alphabet ABCDEFGHIJKLMNOPQRSTUVWXY.
5: CODE_KEY DB 65 DUP (' '), ‘XQPOGHZBCADEIJSUVFMNKLRSTWY'
6: DB 37 DUP (' ')
7: DECODE_KEY DB 65 DUP ('’ ‘),’'JHIKLQEFMNTURSDCBVWXOPYAZG’
8: DB 37 puP (*)
9: CODED DB 80 DUP (’'S’)
10: PROMPT DB ’‘ENTER A MESSAGE:',0DH,OAH,’S’
11: CRLF DB ODH, CAH, ’$*
12: .CODE
13: MAIN PROC .
14: MOV AX, @DATA ;ini-ialize DS
15: MoV DS, AX
l16: ;print input prompt
17: MOV AH, 9 ;print string fecn
18: LEA . QX,PROMPT iDX pts to prompt |
19: INT 214 ;print message
20: ;read and encode message '
2): MOV AH,1 sread char fcn
22 LEA BX,CODE_KEY ;BX pts to code key
23: LEA DI, CODED ;DI pts to coded message
24: WHILE_: ‘ .
w29 tenrsatr s aian INTwes- 23R jread a char .
26: CMP AL, ODH ;carriage return? .)
27: JE ENDWHILE ;yes, go to print coded messag
28: XLA. :;no, encode char

Chapter 10 Arrays and Addressing Modes

199

29: MOV . (DI],AL ;store in coded message
30% INC ;DI oL ;move pointer

31: JMP WHILE_ ;process next char

32: ENDWHILE: R

33: igo to a ncw line

34: MOV . AH,9

35: LEA DX,CRLF

36: INT 21H ’ ":new line

37% ;print encoded message

38y ‘" LEA. DX, CODED tDX pts to coded

39% INT 21H . iprint codea message
40: ;go to a new line

a1: - LEA DX, CRLF

42: INT 218 :new line

43: ;decode message and print’ it

44: MOV All, 2 ;print char fen

45: LEA BX, DECODE_KEY ;BEX 1is to decode key
46: LEA S1,CODED ' ..s teo encoded message
47: WHILEl: , - . - :
48: MOV =~ AL,[$I] ;get a character fr~~— message
49: . CMP AL, 'S’ ;end of messaq:’

5C: JE ENDWHILE1 iyes, exit

51: XLAT o ' ;no, decode character
52: MOV DL, AL ;put in DL

53: INT . 21H. ;print translated char
S54: INC - SI-. - ;move ptr

551 JMP ,.WHILE1 ;process next chcr

56: ENDWHILEl: |

57: - " MOV' ~ AH, 4CH .

58: INT * 214 ;dos exit

59: MAIN ‘ ENDP ¢

60: ©° END" MAIN

Three arrays are declared in the data segment:
1. CODEL_KEY is used to encode English text.

2. CODED holds the encoded message; it is initiatized to a string of
- dollar signs so that it' may be printed with INT 21h, function 9.

3. Dl".CODIi_Kl-’.Y is used to translate the encoded text back to English.

Line 4 is a comment line containing the alphabet, which makes it easier to
sce how characters are encoded and decoded.
~1 - -«Inlines 24-32, characters are read and encoded until a carrniage return
" is typed. AL receives the ASCII code of each input character; XLAT adds it to
address CODE_KEY in BX to produce an address within the CODE_KEY table.
CODE_KLY, is sct up as follows: 65 blanks, followed by the letters to
'whxch Ato Z will be cncodcd followed by 37 more blanks for a total of 128
bytes (128 bytes arc -needed, “because the standard ASCII characters range
_from 0 to '127). Supposc for example, an “A” is typed. The ASCII code of
“A” is 65: XLAT compiites address CODE_KEY+65, picks up the vatue of that
b) te, which is'“X”, and stores it in AL. At line 33, this value is moved into
byte array CODED. Similarly, “B” is translated into ‘Q’, ‘C’ into ‘P’ ., .'Z’
into “Y” (the encoding table was. constructed arbitrarily). Characters other
than :apital letters (including the blank character) have ASCII code in the

200

Summary

ranges 0 to 64 or 92 to 127, and are translated into blanks. In lines 38-39,
the encoded message is printed.

DECODE_KEY also begins with 65 blanks and ends with 37 blanks.
The positions of the letters in this array may be deduced as follows. First,
lay down the alphabet (line 4). Now since “A” was coded into “X”, the letter
at position “X” in the decoding sequence should be “A”. Similarly, because
“B” was coded into “Q”, there should be a “B” at position “Q”, and so on.

In lines 47-56, the encoded message Is translated. After placing the
addresses of DECODE_KEY and CODED in BX and SI, respectively, the pro-
gram moves a byte of the coded message into AL. If it's a dollar sign, the
message has been translated and the program exits. If not, XLAT adds AL to
address DECODE_KEY to produce an address within the decoding table, and
puts the character found there into AL. At line 52, the character is moved
to DL so that it can be printed with INT 21h, function 2.

Summary

* A one-dimensional array is an ordered list of elements of the
same type. The DB and DW pseudo-ops arc used to declare byte
and word arrays.

e An array element can be located by adding a constant to the
base address.

¢ The way that an operand is specified is its addressing mode. The
addressing modes are register, immediate, direct, register indirect,
based, indexed, and based indexed. '

* In register indirect mode, an operand has the form [registez],
where register is BX, SI, DI, or BP. The operand’s offset is con-
tained in the register. For BP, the operand’s segment number is in
SS; for the other registers, the segment number is in DS.

¢ In based or indexed mode, an operand has the farm [register +
displacement]. Register is BX, BP, SI, or DI. The operand’s offset is
obtained by adding the displacement to the contents of the regis-
ter. For BX,S1, or DI, the segment number is in DS; for BP, the seg-
ment number is in SS.

* The operators BYTE PTR and WORD PTR in front of an operand
may be used to override the operand’s declared type.

s The LABEL pseudo-op may be used to assign a type to a variable.

e A two-dimensional array is a one-dimensional array whose ele-
ments are one-dimensional arrays. Two-dimensional arrays mey
be stored row by row (row-major order), or column by column
(column-major order).

¢ In based indexed mode, the offset address of the operand is the
sum of (1) BX or BI’; (2) SI or DI; (3) optionally, a memory offset
address; (4) optionally, a constant. One (of scveral) possible forms
" Is [base_register + index_register + memory_location + constant).
DS has the segment number if BX is used; if BP is used, SS has
the scgment number.

e Based indexed mode may be used to process two-dimensional arrays.

* The XLAT instruction can be used to convert a byte value into an-
other value that comes from a table. AL contains the value to be

Chapter 10 Amays and Addressing Modes

201,

converted and BX the address of the table. The instruction adds
AL to'the offset contained in BX to produce a table address. The
“contents of AL is replaced by the value found at that address.

Glossary
addressing mode

base address of an array

based addressing mode

éolllimn-m‘aior order
direct mode
displaccment

immediatc modc o

" indexed addressing mode

.

one-dimensional ~=—=—
pointcr

register mode
' row-major order

two-dimensional array -

The way the operand js specified

The address of the array variable

An indirect addressing mode in which
the contents of BX or BP are added to a
displacement to form an operand’s offset
address

Column by columin

The operand is a variable

In based or indexed mode, a number
added to the contents of a register to
produce an operand’s offset address

The opcrand is constant

An indirect addressing mode in which
the contents of Sl or DI are added to a

.

. displacement to form an operand’s off-

set address
An ordered list of element of the same type

A regisler that contains an offset address
of an opcrand

The operand is a register

Row by row

r s . i
A one-dimensional array whose clements

are one-dimensional arrays

New instructions
XLAT

New Pseudo-Ops ~

_ pup LABEL PTR
Exer':c_isé;s"
- 1. Suppose
AX contains 0500h offset 1000h contains 0100h

* BX contains 1000h
"SI contains 1500h -
DI contains 2000h

offset 1500h contains 0150h
offset 2000h contains 0200h
offset 3000h contains 0400h
offset 4000h contains 0300h

and BETA is a word variable whose offset address is 1000h

202-

Exercises -

For each of the following instructions, if it is legal, give the
sourcc offsct address or register and the result stored in the desti-
nation. '

MOV DI, SI

MOV DI, (DI

ADD AX, [SI]

SUB BX, [DI}

LEA BX,BETA[BX]

ADD. [SI], (DI)

ADD BH, [BL]

ADD AH, [SI]

i. MOV AX, (BX + DI + BETA]
Given the following declarations
A DW 1,2,3

B DB 4,5,6

C LABEL WORD

MSG DB ‘ABC’

TR 0 o0 ow

and suppose that BX contains the offset address of C. Tell which

of the following instructions are legal. If sc, give the number

moved.

MOV AH, BYTE PTR A

MOV AX, WORD PTR B

MOV AX, C

MOV AX, MSG

e. MOV AH, BYTE PTR C

Use BP and based mode to do the following stack operations.

(You may use other registers as well, but qon't use PUSH or POP.)

a. Replace the contents of the top two words on the stack by zeros.

b. Copy a stack of five words into a word array ST_ARR, so that
ST_ARR contains the stack top, ST_ARR + 2 contains the next
word on the stack, and so on.

Write instructions to carry out each of the following operations

on a word array A of 10 elements or a byte array B of 15 elements

a. Move Afi+1] to position i, i=1...9, and move A[1] to
position 10.

b. Count in DX the number of ‘zero entrics in array A.
Supposc byte array B contains a character string. Search B for
the first occuzrence of the letter “E”. If found, make SI point
to its location; if not found, set CF.

Write a procedure FIND_IJ that returns the offset address of the el-

ement in row i and column j in a two-dimensional M x N word ar-

ray A stored in row-major order. The procedure reccives i in AX, j

in BX, N in CX, and the offset of A in DX. It returns the offset ad- *

dress of the clement in DX. Note: you may ignore the possibility

of overflow.

a.
b.
c
d

221 6 5 3 7
1 2 35 67

Chapter 10 Armays and Addressing Modes 203

. Programming Exercises

. - To sott an a'riéyvA of N elements by the bubblesort method, we
- proceed as follows: .

Pass 1. Forj=2...N, if Alj]} < A[j - 1] then swap A{f]-and
Alj - 1]. This will place the largest element in position N.

Pass 2. Forj=2...N-1,if Aljl.< A[j - 1] then swap Alj} and

,AU-1LT his will place the second largest element in position N - 1.

Pass N-1. If A[Z] < A[1}, then swap A[2] and A[l] At thlS point
the arzay is sorted.

‘Demonstration

initial data 7 5 3 9 1
pass 1 S . 3 7 1 9
pass 2 3 S 1 7 9
pass 3 3 1 S 7 9
pass 4 1 3 " s 7 9

Write a procedure BUBBLE to sort a byte array by the bubblesort
algorithm. The procedure receives the offset address of the array
in'SI and the number of elements in BX. Write a program that
lets the user type a list of single-digit numbers, with one blank be-
tween numbers, calls BUBBLE to sort them, and prints the sorted
list on the next line. For example,

Your program should be able to handle an array with only one
element.

Suppose the class records in the example of section 10.4.3 are
stored as follows

CLASS

DB *MARY ALLEN ‘’,67,45,9 8,33
DB *SCOTT BAYLIS’,79,56,87,44
DB ‘GEORGE FRANK’,82,72,89,40
DB *SAM WCNG ',78,76,92, 60

Each name occupies 12 bytes. Write a programn to print the name
of each student and his or her average (truncated to an mteger)
for the four exams.

Write a program that starts with an Initially undefined byte array

of maximum size 100, and lets the user insert single characters

204 Programming Exercises

?A
2D

’B
"ABD

a

ABDa

2D

ABDa

? <ESC>

9.

10.

into the array in such a way that the array is always sorted in as-

cending order. The program should print a question mark, let the
user enter a character, and display the array with the new charac-
ter inserted. Input ends when the user hits the ESC key. Duplicate
characters should be ignored.

Sample execution:

Write a program that uses XLAT to (a) read a line of text, and (b)
print it on the next line with all small letters converted to capi-
tals. The input line may contain any characters—simall letters, cap-
ital, letters, digit characters, punctuation, and = on.

Write a procedure PRINTHEX that uses XLAT Lo display the con-
tent of BX as four hex digits. Test it in a program that lets the
user type a four-digit hex integer, stores ‘t in BX using the hex in-
put algorithm of section 7.4, and calls PRINTHEX to print it on
the next line.

The String
Instructions

Overview

11.1
The Direction Flag

In this chapter we consider a special group of instructions called the
string instructions. In 8086 assembly language, a memory string or string
Is simply a byte or word array. Thus, string instructions are designed for array
processing. :

Here are examples of operatlons that can be performed with the
itring instmcﬁons

‘Copy a string into another string.
n "* Search a string for a particular byte or word.
. e Store characters in a string.
t - o Compare strings of characters alphabetically.
The tasks carried out by the string instructions can be periormed by
1sing the register indirect'addressing mode we studied in Chapter 10; how-
wer,.the string instructions have some built-in advantages. For example,
‘hey provide automatic updatmg of pointer registers and allow memory-
nemorv operations.

In Chapter 5, we saw that the FLAGS register contains six status flags
and three control flags. We know that the status flags reflect the result of an
operation that the processor has done. The control flags are used to control
the processor’s operations. .

-One of the control flags ls the direction flug (DF). Its purpose is to
determine the direction in which string operations will proceed. These op-
crations are impiemented by the two index registers SI and DI. Suppose, for
example, that the following string fhius been declared:

205

206 11.2 Moving a String

STRING1 DB ‘ABCDE’
And this string is stored in memory starting at offset 0200h:

Offset address Content ASCll character
0200h 041h A
0201h 042h . 8
0202h 043h ¢
0203h 044h D
0204h ’ 045h 3

1f DF = 0, SI and DI proceed in the direction of increasing memory addresses:
from left to right across the string. Conversely, if DF = 1, S1 and DI proceed
in the direction of decreasing memory addresses: from right to left.

In the DEBUG display, DF =0 is symbolized by UP, and DF = 1 by DN.

CLD and STD

To make DF = 0, use the CLD instruction
CLD ;ciear directio flag
To make DF = 1, use the ST: instruction:

STD ;set .direction flag

CLD and STD have no effect on the other flags.

11.2
. Moving a String

Suppose we have defined two strings as follows:

.DATA
STRING1 DB "HELLO'
STRING2 DB 5 DUp (?)

and we would like to move the contents of STRING1 (the source string) into
STRING2 (the destination string). This operation is nceded for many string
operations, such as duplicating a string or concatenating strings (attaching
one string to the end of another string).

The MOVSB instruction

MOVSB ;move string byte

copies the contents of the byte addressed by D5:Sl, to the byte addressed by
£S:Dl. The contents of the source byte are unchanged. After the byte has
been moved, both Sl and DI are automatically jncremenied if DF = 0, or
decremented if DF = 1. For example, to move the first two bytes of STRINGI
to STRING2, we execute the following instructions:

_MOV AX, @DATA

MOV DS, AX sinitialize DS

MOV ES, AX ;and ES

LEA SI,STRING1l - 1S1 points to source string

LEA DI, STRING2 ;DI points to destination string
CLD ;clear DF

MOVSB ;move first byte

MOVSB ;and second byte
See Figure 11.1. '

-Figure 11.1 -MOVsB

Chapter 11 The String Instructions

. Before MOVSB'

o Toe ’

STRING1
Offset
STRING2 - ~ ..---
'oﬁset 6 7 8 9
[* T
After MOVSB -’
s
STRINGY nﬁﬂ
Offset ot 2 3 4
o
Offset s 6 7 8 9.
' After MOVSB L K
STRING ﬂﬂﬂ
Offset _'l 2 3 4
R o P
stz -

- Offset +, 5.6 7 8 9

Cee . -

207

\ MOVSB is the first instruction we have seen that permits a memory-
memory operation. It is also the first Instruction that involves the ES register.

.

v - The REP Preflx i

MOVSB moves only a sing\e byte from the source string to the des-
tination string. To move the entire string, first initialize CX to the number

N of bytes in the source string and execute .

REP MOVSB

208

11.2 Moving a String

The REP prefix causes MOVSE to be executed N times. After each MOVSB,
CX is decremented until it becomes 0. For example, to copy STRING1 of the
preceding section into STRING2, we execute

CLD

LEA SI,STRING1
LEA DI, STRING2
MOV CX,5 ;no. of chars in STRING1
REP MOVSB

Examplc 11.1 Wirite instructions to copy STRING1 of the preceding section
into STRING2Z in reverse ordet.

Solution: The idea is to get SI pointing to the end of STRING1, DI to’
the beginning of STRINGZ2, then move characters as S! travels to the left
across STRING1.

LEA SI,STRING1+4: ;SI pts to end of STRING1
LEA DI,STRING2 ;DI pts to beginning of STRING
STD ;right to left processing
MOV CX,5
MOVE:
MOVSB ;move a byte
ADD DI,2
LOOP MOVE

Here it is necessary to add 2 to DI after each MOVSB. Because we do this
when DF = 1, MOVSB automatically decrements both SI and DI, and we .
want to increment DI.

Movsw
There is a word form of MOVSB. It is
MOVSW ;move string word

MOVSW moves a word from the source string to the destination string. Like

MOVSB, it expects DS:SI to point to a source string word, and ES:DI to point

to a destination string word. After a string word has been moved, both, SY

and DI are increased by 2 if DF = 0, or are decrcased by 2 if DF = 1.
MOVSB and MOVSW have no effect on the flags.

Examplc 11.2 Tor the following array,

ARR DW 10,20,40,50,60,7?

write instructions to insert 30 between 20 and 40. (Assume DS and ES
have been initialized to the data segment.)

Solution: The ideca'is to move 40, 50, and 60 forward one position in
the array, then insert 30.

11.3
Store String

Chapter 11 The String Instructions ' 200

3TD ;right to left processing
LA ¢4, ARR+8h ' ;81 pts to 60

“EA DI, ARR+Ah ;DI pts to ?

<0, 3 " ;3 elts to move

RIP MOVSW . ;move 40,50, 60

{ OV JORD PTR ([D1), 30 iinsert 30

Note: the PTR operator was introduced in section 10.2.3.

3

i

The STOSB Instruction .

STOSB ;store string byte

moves-the contents of the AL register to the byte addressed by ES:DI. Dl is
incremented if DF = 0 or decremented if DF = 1. Similarly, the STOSW
instruction

STOSW . :store string word

moves the contents of AX to the word at address ES:DI and updates DI by
2, according to the direction flag setting.
STOSB and STOSW have no effect on the flags.
-~ = As an example of STOSB, the following instructions will store two
“A”s in STRING 1: . o

OV hX, GDATA

WV ES3, AX ;initialize ES

EA DI, STRING. ;DI points to STRING1

£2.D sprocess to the right

LoV oML, A ;AL has character to store
ress ;store an ‘A’

OB rstore another one

See Figure 11.2.

Reading and Storing a Character String

INT 21h, tanction 1 reads a character from the keyboard into AL. By
1epeatedly execnting this internipt with STOSB, we can read! and store a character
string. In addition, th:e characters may be processed before storing them.

) The toliwing procedure READ_STR reads and stores characters in a
sitiing, until o carriage return is typed. The procedute is entered with the
string offset adu ess in DL 1 1eturns the string offset in 11, and number of
characters entored in BX. If the user makes a typing mistake and hits the
bucks;:ace key, the previous character is removed from the string.

This procedure is similar to DOS INT 21h, function OAh (see exercise
1111

Algorithm for READ_STR

chars_rcad = 0
read a uvhar
WHILE char is not a carriage return DO
IF char is a bachkspace ’
THEN
chars_read - z=hgon _read - 1

~

210 11.3 Store String

Figure 11.2 STOSB Before STOSE
3’
STRING1 [IH"['EII g l g],o,j l Y J
Offset 0o t 2 3 4 AL
After STOSB .
q
STRING1 [A.I'E:J ‘L:J ,L,Ilorl [A]
Offset » 0 1 2 3 4 AL
After STOSB
Q

STRING1 [TA‘J A f.L.l .Lj.oj [%]
Offset -0 1 2 3 4 AL

remove previous char from string
ELSE ’
store char in string
chars_read = chars_read + 1
END_IF
read a char
END_WHILE -

Program Listing PGM11_1.ASM

1: READ_STR PROC NEAR

2: ; Reads and‘'stores a string

3: ; input: DI offset of string

4: output: DI offset of string

5: ;BX number' of characters read

6: " FUSH AX

7: PUSH DI -

8: CcLD ;process from left

9: XOR BX, BX ;no. cf chars read

10: MOV A, 1 ;input char function
11: INT. 21H ;read a char into AL
12: WHILEL: .

i3: cMP AL, ODH ;CR?,

14: JE END_WHILEL ;yes, exit

15: ;if char is backspace

16: CMP AL, 8H ;backspace?

17 JNE ELSEl ;no,store in string

18: :then

19: DEC DI :yes, move string ptr back
20: DEC BX ;decrement char counter

1.4
Load String

_Chapter 11 The String Instructions 211

21: JMP READ ;and go to read ‘another char
22: ELSEl: .
23: STOSB ;store char in string
24: NG P BX ;increment char count
25: READ: 7

26: INT "21H ;read a char into AL
27: A JMP WHILEL sand continue loop
28: END_WHILEL:

29: poP DI

30:) POP AX

31: RET.

.32: READ_STR’ ENDP '

" At line 23, the procedure uses STOSB to store input characters in the string.

STOSB automatically increments DI; at line 24, the character count in BX is
incremented.

The procedure takes into account the possibility of typing errors. If
the user hits the backspace key, then at linc 19 the procedure decrements

"DI and BX. The backspace itself is not stored. When the next legitimate

character is read, it replacés the wrong one in the string. Note: if the last
characters typed before the carriage return are backspaces, the wrong char-
acters will remain in the string, but the count of legitimate characters in BX

will be correct.

Wa 11co RFAN CTR far ctring innut in thse fallawinag cortinne

The LODSB instruction
LODSB ~,load str;ng byte

moves the byte addxessed by DS:SI into AL. Sl is then incremented if DF =
0 or decremented if DF = 1. The word form is

LODSW - sload string word

it moves the word addressed by DS Sl into AX; Sl is increased by 2 if DF =

0 or decreased by 2 if DF = |.
LODSB can be used to examine the characters of a string, as shown

later.
LODSB and.LODSW have.no effect on the flags.

To illustrate LODSB, suppose STRING1 is defined as

STRING1 DB ‘ABC’

The following code sutcessively'loads the first and second bytes of STRING1
into AL

MOV AX, @DATA

MOV DS, AX ;jinitialize DS

LEA SI,STRING1 2SI points to STRINGI

CLD /process left to right
LODSB +load.first byte into AL
LODSB, isloadsécond byte into AL

" See Figure 11.3.

212 11.4 toad String

figure 11.3 LODSB

Before LODSB

sl
STRING1 “n [:,
Offset o 1 2 AL

After LODSB

st
ST .
1 2

Offset 0 AL

After LODSB

SI
N
1 2

Offset 0 AL ¢

-

Displaying a Character String

The following procedure DISP_STR displays the string pointed to by
SI, with the number of characters in BX. it can be used to display all or part
of a string.

Algorithm for DISP_STR

FOR count times DO /* count = no. of characters to display *
load a string character into AL
move it to DL
output character

END_FOR

Proyram Listing PGM 11_2.ASM
;displays 3y string
;input: Sl1’= offset of string
H BX = no. of chars, to display
soutput: none
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH S1
MOV CX,BX ;no. of chars
JCXZ P_EXIT ;exit 1f none
CLD ;process left to right

Chapter 11 The String Instructions 213

MoV AH, 2 ;prepare to print
TOP: '
LODSB ;char in aL ~
MoV DL,AL ;move it to ‘DL
INT 21H ;print char
LOOP TOP :loop until done
P_EXIT:)
POP SI
por DX
POP CX
POP BX
POP AX
. RET
DISP_STR ENDP! t :

) To demonstrate READ_STR and DISP_STR, we'll write a program that
reads a string (up to 80 characters) and displays the first 10 characters on
the next line.

P

Program Listing PGM11_3.ASM
TITLE PGM11l_3: TEST READ_STR and PRINT_STR
.MODEL SMALL -
.STACK
.DATA
STRING DB 80 DUP (0)
CRLF DB ODH, OAH, *S’
.CODE
MAIN PROC
MOV AX, @DATA
MOV DS, AX
MOV ES,AX
;read a string
LEA DI, STRING ;DI pts to string
CALL READ_STR' ;BX = no. of chars read
;go to a new line
LEA DX, CRLY
MOV AH, 9
INT 21H
;print string
LEA SI,STRING, ;81 pts to string

MOV BX,10 ;display 10 chars
CALL DISP_STR -
;dos exit
MOV AH, 4CH
INT 21H
MAIN ENDP

/READ_STR goes here
:DISP. STR goes here
" END MAIN _

'2i4 11.5 Scan String

Sample execution:

C>PGM11_3
THIS PROGRAM
THIS PROGR

TESTS TWO PROCEDURES

1.5
Scan String

The instruction .
SCASB ;scan string byte

can be used to examine a string for a target byte. The target byte is contained
in AL. SCASB subtracts the string byte pointed to by ES:DI from the contents
of AL and uses the result to set the flags. The result is not stored. Afterward,
DI is incremented if DF = 0 or decremented if DF = 1.

The word form is o

SCASW ;scan stfing word

in this case, the target word is in AX. SCASW subtracts the word addressed
by ES:DI from AX and sets the flags. DI is increased by 2 if DF = 0 or decreased
by 2 if DF = 1. ’

All the status flags are affected by SCASB and SCASW.

Figure 11.4 SCASB

Before SCASS

(o] . :
et A TEe
Offset o 1 2 ' AL
After SCASB

o
STRING1 ' 2ZF = 0 {not found)
Offset 0 1 2 AL
After SCASB

D

STRING 1 nﬂ [»'s' l 2F = 1 (found)
Offset 0 1 2 AL

A3

Chapter 11 The String Instructions 215

For example, if the string

STRING1 DB ‘ABC’

is defined, then these instru&ions examine the first two bytes of STRING1,
looking for “B”

MOV AX, @DATA

MOV AX,ES ;initialize ES

CLD ;left to right processing
LEA DY,STRING1 . . ;DI pts to STRING1

MOV AL, ‘B’ . ;target character

SCASB wscan first- byte

SCASB : ;scan second_ byte

See Figure 11.4. Note that when'the target “B” was found, ZF = 1 and because
- SCASB automatncally increments DI DI points to the byte after the target,

not the target itself. '
s In looking for a target byte in a string, the string is traversed until

the byte is found or the string ends. lf CX is initialized to the number of
bytes in the string,

.
-

RBPNE_ 5 SCASB ;repeat SCASB while not equal
(to target)

3

will repeatedly Subtract each string byte from AL, update D], and decrement
CX dntil there is a zero result (the target is found) or CX = O (the string
ends). Note: REPNZ (repeat while ‘not zero) generates the same machine
code as REPNE.

As an example, Tt 's write a program te count the number of vowels
and consonants 1n a stnng

Algorithm for Counting Vowels and Consonants

Initialize vowel count ar! ¢ ~sonrnt_cour* L. 0;
.Read and stcre a <*:137Q
REPEAT - .,

Load a_str.nec chara.ter,
IF 1%’s a ~oweld
THEN
1ncremernt vowel count
ELSE IF it’s a conscnant
THEN increment consonant_count
END 1F, s
UNTIL end of sr.n.ng -
display no. of vowels
display no. of consonants

We'll use procedure READ_STR (section 11.3) to read the string. it
returns with DI pointirig-'to the string and BX containing the number of
characters read. To display -the number of vowels and consonants in the
string. we'll use procedure’OUTDEC of Chapter 9. It displays the contents
of AX as a signed decimal integer. For simplicity, we'll suppose the input is in
upper case.

Program Llstmg PGM11 _A.ASM

TITLE PGM 11.4:. COUNT VOWELS AND CONSONANTS
.MODEL SMALL

.STACK 100H

.DATA
STRING DB 80 DUP (0)

oW N o

216 -

11.5 Scan String

S:
6:
7:

9:

10:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

47: -

48:
49:
50:
s51l:
82:
53:
54:
55:

57:
58:
59:
60:

"VOWELS DB ‘ALIOU’
CONSONANTS DB

ouT1 DB

ouT2

VOWELCT DW 0

CONSCT . DW 0

MAIN PROC

MOV AX, @DATA
MOV DS, Aax
MOV ES, AX

LEA DI, STRING

CALL READ_STR
MOV S1,DI
CLD

REPEAT: .

;load a string character
LODSB

;if it’s a vowel
LEA DI, VOWELS
MOV CX,5
REPNE SCASB
JNE CK_CONST

’ BCDFGHJIKLMNPQRSTVWXYZ2'
ODH, OAH, 'vowels = 5
bB ‘’, consonants = §'

sinitialize DS

sand ES

;DI pts to string

:BX = no. of chars read
;SI pts to string

;left to right processing

;char in AL

;DI pts to vowels
;5 vowels

:is char a vowel?
;no other char

;then increment vowel count

INC VOWELCT
JMp UNTIL

;jelse if it’s a consonant

CK_CONST:

MOV CX, 21
REPNE SCASB
JNE UNTIL

LEA DI,CONSONANTS ;DI pts to consonants

;21 consonants
;is char a consonant?
;no

;then increment consonant count

INC CONSCT
UNTIL: -

DEC . BX

JNE REPEAT
youtput no. of vowels

MOV AH,9

LEA DX,OUT1

INT 21H

MOV AX,VOWELCT
* CALL OUTDZC

;output no. of consonants
MoV AH, 9
LEA DX, 0UT2

INT 21H
MOV AX, CONSCT
CALL

OUTDEC
;dos exit ’
MOV - AH, 4CH
INT = 21H
MAIN . ENDP
;READ_STR goes here
‘7OUTDEC goes here
’ . END _ MAIN

:BX has no. chars left in
;loop if chars left

;prepare to print
;get vowel message
;print it

;get vowel count
;print it

;prepare to print

;get consonant message
;print it ’

sget consonant count
;print it

str

Chapter 11 The String Instructions 217

Because the program uses botn LODSB, which loads the byte in DS:S],
and SCASB, which scans the byte in ES: DI, both DS and ES must be initialized.
BX is used as a loop counter and is set to the number of bytes in the stnng
(CX is used elsewherc in the program).

Line 22. LODSB puts a stnng character in AL and advances SI to
the next one.

Line 26. To scc if the character in AL is a vowel, the program
scans the string VOWELS by executing REPNE SCASB. This in-
struction subtracts each byte of VOWELS from AL and sets the
flags. The instruction returns ZF = 1 if the character is a vowel
and ZI' = O if it isn't.

Line 35. If the target was not a vowel, the program scans the string
CONSONANTS, in exactly the same way it scanned VOWELS.

Sample exccution:

C>PGM11_4
A,E, I,0,U ARE VOWELS.
vowels = 9, consonants = 5
~&
11.6
Compare String The CMPSB Instruction

" CMPSE ;compare 'string byté

subtracts the byte with address ES:DI from the byte with address DS:S1, and
sets the flags. The result is not stored. Afterward, both SI and DI are incre-
mented if DF = 0, or decremented if DF = 1.

The word version of CMPSB is

CMPSW ;compare string word

It subtracts the word with address ES:Dl from the word whose address is DS:SI,
and sets the flags. If DF = 0, SI and DI are increased by 2; if DF = 1, they are
decreased by 2. CMPSW is useful in comparing word arrays of numbers.

All the status flags ar¢ affected by CMPSB and CMPSW.

For example, suppose

-DATA .
STRING1 OB ‘ACD’
STRINGZ DB . ‘ABC’

The following ipstructiohs compare the first t\vo bytes of the preceding strings:

., MOV AX, @DATA .
MOV DS,AX .© ' = ;initialize DS

MOV ES, AX "~ ;and ES
CLD’ B ;left to right processing

LEA 51,STRINGI ;81 pls Lo STRINGL

218 11.6 Compare String

Figure 11.5 CMPSB

B8efore CMPSB
Sl
STRING1 Hﬂ
Offset 0 1 2
DI
STRING2 n 'c
Offset 3 4 5
After CMPSB
]
STRING1 n ‘C'|'D RESULT = 041h - 041h = 0 (not stored)
ZF=1,5F=0
Offset 0 1 2
Dt
STRING2 un
Offset 3 4 5
After CMPSB
M|
STRING? “ " RESULT = 043h - 042h = 1 (not stored)
2ZF=0,5F=0
Offset o 1 2
[o]]
STRING2 Al sl
Offset 3 4 S
LEA DI, STRING2 ;DI pts to STRING2
CMPSB ;compare first bytes
CMPSB ;compare second bytes
See Figure 11.5.
REPE and REPZ

String comparison may be done by attaching the prefix REPE (repeat
while equal) or REPZ (repeat while zero) to CMPSB or CMPSW. CX is ini-
tialized to the number of bytes in the shorter string, then
REPE CMPSB ;compare string bytes while equal
or

REPE CMP3W ;compare string words while equal

Chapter 11 The String Instructions 219

l repeatedl.y executes CMPSB or CMPSW and decrements CX until (1) there

is.a mismatch between corresponding string bytes or words, or (2) CX = 0.
The tlags are set according to the result ot the last comparison.

CMPSB may be used to compare two character strings to see which
comes first alphabetically, or if they are identical, ur it one string is a substring
of the other (this means that one string is contained within the other as a
sequence of consecutive characters).

As an example, suppose STR1 and STR2 are strings or length 10. The
following instructions put 0 in AX if the strings are identical, put 1 in AX
if STR1 comes first alphabetically, or put 2 in AX if SIR2 comes first alpha-
betically (assume DS and ES are initialized). .

;length L 3tLinygs
LEA SI,STRI1 ;SI points to STRI
LEA DI,STR2 " ;DI poincs to STK2
CLD ;lert to riyht processing
" REPE CMFSB ;compare string cvtes
JL STR1_FIRST :STR1 precedes STR2
) - JG STRZ FIRST ;STR2 precedes S5TKL
;here if strings are identical |

MOV (X, i0

MOV AX,0 sput 0 in EX
JMP EXIT . ;and exit
shere if STR! precedes STR2
STR1_FIRST: -
MOV AX,1 sput 1 oan AX
J4p EXIT ;and exit

shere if STR2 precedes STRI1
STR2_FIRST:
MOV 2X, 2 JPUT 2 ain RX

EXIT:

11.6.1
Finding a Substring of
a String

U

There are several ways to determine whether one string is a substring
of another. The following way is probably the simplest. Suppose we declare

SUBl1 " DB *ABC’
SUB2 DB *CaB’
MAINST DB ‘ABABCA’

and we want to see whether SUB1 and SUB2 are substrings of MAINST.
Let’s begin with SUB1. We can compare corresponding characters in
the strings
SUB1 * . AEC
B
MAINST £ B ABCA

Because'there is.a mismatch at the third comparison, we backtrack and try
to match SUB1 with the part of MAINST from position MAINST+1 on:

A BC

L

MAINST AR ABCA

-

220

11.6 Compare String

There is a mismatch immediately, so we begin again, and at position
MAINST+2

SUB1 A (o}
P

B
MAINST ABABCA

This time we are successful; SUBI is a substring of MAINST.
Now let’s try with SUB2. The search proceeds as before until we reacn

$UBZ v C aAB

MAINST A BABCA

There is a mismatch, and there is no need to proceed further, for if we did
we would be trying to match the three characters of SUB2 with the two
remaining characters “CA” of MAINST. Thus SUB2 is not a substring of

MAINST.
Actually, we could have predicted the last place to search. It is

STOP = MAINST + length of MAINST —length of SUB2
= MAINST + 6 — 3 = MAINST + 3 '

Here is an algorithm and a program that scarches a main string
MAINST for a substring SUBST.)

Algorithm for Substring Search

Prompt user to enter SUBST
Recad SUBST .
Prompt user to enter MAINST
Rerad MAINST .
iF (length of MAINST is 0) OR (length of SUBST is 0)
OR (SURBST is5 longer tharn MAINST
THEN
SUBST is not a substring of MAINST
ELSE '
cempute STOP
_ START = offset of MAINST
REPEAT
compare corresponding characters in MAINST
(frcm START on) and SUBST
IF all characters match

THEN

SUBST found in MAINST
ELSE

START = START + 1
END IF

UNTIL (SU2ST found in MAINST)
OF (START > STOP)
Dizplay results

After reading SUBST and MAINST, and verifying that neither string
is null and SUBST is not longer than MAINST, in lines 44-50 the program
computes STOP (the place in MAINST to stop scarching), and initializes
START (the place to start searching) to the beginning of MAINST.

Chapter 11 ' The String Instructions 221

'Program Listing PGM11_5.ASM

1
2
3
4
5:
6.
9
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
i9:
20:
21:
22:
23:
24:
25:
26:
27:
28:
. 29:
30:
31:,
32:
33:
34:
35:
36:
37:
38:
39:
10:
1l1:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

TITLE PGM11_5: SUBSTRING DEMONSTRATION
.MODEIL SMALL

.STACK 100H N .
.DATA ' .

MSG1 DB 'ENTER SUBST’,0DH, 0AH, 'S’

MSG2 DB ODR, OAH, 'ENTER MAINST', ODH, OAH,’$’

MAINST DB - 80 DUP (0)

SUBST DB 80 DUP (0)

STOP bW ? " ;last place to begin search
START DW ? : iplace to resume search
SUB_LEN DW? ;substring length

YESM3G OB ODH, ODAH,’'SUBST IS A SUBSTRING OF MAINSTS’
NOMSG DB ODH, OAH, ' SUBST IS NOT A SUBSTRING OF MAINS1T
.CODE :

MAIN PROC

MOV AX, @DATA

MOV DS, AX

MOV ES,AX
;prompt for SUBST

MOV AH, 9 ;print string fcn

LEA DX,MSG1 ;substring prompt

INT 21H ;prompt for SUBST
;read SUBST :

LEA DI, SUBST

CALL READ_STR ' ;BX has SUBST length

MOV ~ SUB_LEN,BX ;save in SUB_LEN
;prompt for MAINST

LEA DX,MSG2. ;main string prompt

INT 21H ;prompt £for MAINST

;read MAINST .
LEA DI,MAINST

CALL READ_STR ;BX has MAINST length
;see if string null or SUBST longer than MAINST
OR BX, BX ;MAINST null?
JE NO ;yes, SUBST not a subpstring
CMP SUB_LEN, 0 ;SUBST null?
‘JE 3o} ;yes, SUBST not a substring
cMp SUB_LEN,BX ;substring > main string?
JG NO .;yes, SUBST nolL a substring
;see if SUBST is a substring of MAINST
LEA 5I,3UBST ;SI pts to SUBST
LEA DI,MAINST ;DI pts to MAINST
CLD ileft to right processing
;compute STOP R
MOV STOP,DI :STOP has MAINST address
ADD STOP, BX ;add MAINST length
MOV CX, SUB_LEN .
suB STOP, CX ;subtract SUBST length
;initialize start N ’
MOV START, DI ;place to start search
REPEAT: . -
;compare characters o
MOY CLEN ;length of substring
MOV DI, START ;reset DI

222

11.6 Compare String

55: LEA SI, SUBST ;reset SI

56: REPE CMPSB ;compare characters
57: JE YES ; SUBST found
£8: ;substring not found yet

59: INC START ;update START
60: ;see if start <= stop

61: MOV AX.START

62: CMP AX, STCP ; START <= STOP?
63: JNLE NO ;no,exit

64 JIMP REPEAT ;keep going

65: ;display results

66: YES:

67: LEA DX, YESMSG

68: JMP DISPLAY

69: NO:

70: LEA DX, NOMSG

71: DISPLAY:

72: MOV AH, 9

73: INT 21H ;display results
74: ;DOS exit

75: MOV AH, 4CH

76: INT 21H

77: MAIN ENDP

78: ;READ_STR goes here

79: END MAIN

At line 51, the program enters a REPEAT loop where the characters of
SUBST are compared with the part of MAINST from START on. In lines 53-56,
CX is set to the length of SUBST, Sl is pointed to SUBST, DI is pointed to START,
and corresponding characters are compared with REPE CMPSB. If ZF = 1, then
the match is successful and the program jumps to line 66 where the message
“SUBST is a substring of MAINST” is displayed. If ZF = 0, there was a mismatch
between characters and START is incremented at line 59. The search continues
until SUBST matches part of MAINST or START > STOP; in the latter case, the

message “SUBST is not a substring of MAINST” is displayed.

Sample executions:

C>PGM11_5

ENTER SUBST

ABC

ENTEK MAINST

XYZRBABC

SUBST [S A SUBSTRING OF MAINST

C>PGM11_S
ENTER SUBST

ABD

ENTEK MAINST

ABACADACD .

SUBST IS NOT A SUBSTRING OF MAINST

Chapter 11 The String Instructions 223

11.7 .
General Form of} the
String Instructions

.

Let us summarize the byté and word forms of the string instructions:

Instruction Destination Source Byte form Word form
Move string ES:DI DS:sl MOVSB MOVSW
Compare string” ES:DI T DSSI CMPSB CMPSW
Store string ES:DI Al or AX STOSB STOSW
Load;string - Al or AX DS:SI . LODSB LODSW
Scan string ES:D! AL or AX SCASB SCASW

* Result not stored.

The opcrands of these instructions are implicit; that is, they are not
part of the instructions themselves. However, there are forms of the string
instructions in which the operands appear explicitly. They are as follows:

Instruction’ Example
MOVS destination_string, source stnng MOVS8

CMPS destination _string, source_string CMPSB

STOS destination_string STOS STRING2
LODS source_string - LODS STRING?
SCAS destination_string SCAS STRING2

When the a§sem_bler encounters one of these general forms, it checks to see
if (1) the source string is in the segment addressed by DS and the destination

' string is in the segment addressed by ES, and (2) in the case of MOVS and
" CMPS, if the strings are of the same type; that is, both byte strings or word

strings. If so, then the instruction is coded as either a byte form, such as
MOVSB, or a word form, such as MOVSW, to match the data declaration of
the string. For example, suppose that DS and ES address the following seg-
ment:

.DATA _
STRING1 DB ‘ABCDE’
STRINGZ - DB ‘EFGH’
STRING3 DB v YIJKL’
STRING4 DB - 'MNOP’
STRINGS DW . 1,2,3,4,5
STRING6 DW. 7,8,9

‘Then the foilowing pairs of instructions are equxvalc.nt

MOVS STRING2, STRING1 MOVSB
MOVS STRING6, STRINGS MOVSW
LODS’ STRINGY LODSB
LODS STRINGS LODSW
. SCAS STRING1 . SCASB
STOS STRING6 "t STOSW

It is-importart to note that if the general forms are used, it is still necessary to
make DS:SI and ES:DI point to the source and destination strings, respectively.

There are advantages and disadvantages in using the general forms
of the string instructions. An advantage is that because the operands appear
as part of the code, program documentation is improved. A disadvantage is

224

Summary

that only by checking the data definitions is it possible to tell whether a
general string instruction is a byte form or a word form. In fact, the operands
specified in a general string instruction may not be the actual operands used
when the instruction is executed! For example, consider the following code:

LEA SI,STRING1 ;SI PTS TO STRINGI
LEA DI, STRING2 ;DI PTS TO STRING2
MOVS STRING4, STRING3

Even though the specified source and destination operands are STRING3 and
STRINGA4, respectively, when' MOVS is exccuted the first byte of STRING1 is
moved to the first byte of STRING2. This is because the assembler translates
MOVS STRING4, STRING3 into the machine code for MOVSB, and SI and
DI are pointing to the first bytes of STRING1 and STRING2, respectivefy.

Summary

e The string instructions are a special group of array-processing in- A
structions.

¢ The setting of the direction flag (DF) determines the direction -
that string operations will proceed. If DF = 0, they proceed left to
right across a string; if DF = 1, they proceed right to left. CLD
makcs DF = 0 and STD makes it 1.

* MOVSB moves the string byte pointed to by DS:51 into the byte
pointed to by ES:DI, amd SI and DI to be updated according to
DE MOVSW is the word form. These instructions may be used
with the prefix REP, which causes the instruction to be repeated
CX times.

* REPE and REPNE are conditional prefixes that may be used. with
-string instructions. REPE causes the string instruction that follows to .
be repeated CX times as long as ZIF = 1. REPNE causes the following
string instruction to be repeated CX times as long as ZF = 0. REPZ
and REPNZ are alternate names for REPE and REPNE,. respectively.

* STOSB moves AL to the byte addressed by ES:DI, and updates DI
according to.DF. STOSW is the word form. STOSB may be used to
read a character string into an array.

* LODSB moves the byte addresscd by DS:SI into AL, and updates
S! according to DI LODSW is the word form. LODSB may be
used to examine the contents of a character string.

* SCASB subtracts the byte pointed to by ES:DI from AL and uses
the result to st the flags. The result is not stored, and DI is up-
dated according to DF. SCASW is the word form; it subtracts the
word pointed to by ES:DI from AX, sets the flags, and updates DI.
The result is not stored. These instructions may be used to scan a
string for a target byte or word in AL or AX.

* CMPSB subtracts the byte pointed to by ES:DI from the byte
pointed to by DS:SI, sets the flags, and updates both St and DI ac-
cording to DF. The result is not stored. The word form is CMPSW.
These instructions may be used to compare character strings “
alphabetically, to see if two strings are identical, or if one string is
a substring of another.

Chapter 11 The String Instructions 225

The string Tnstructions have general forms in which the operands
are &flicit. The assembler uses the operands only to decide
whether to code the instructions in byte or word form.

" Glossary
(mcmory) string - A byte or word array

..

.New Instructions

CLD . LODSW 3CASW
CMES MOVS STD
CMP3B MOVSB STOS
CMPSW MOVSW - STOSB
LODS SCAS SPOSW
LODSB SCASB ’
String Instruction Prefixes
REP ' REPNE ’ REPZ
REPE : ’ REPNZ
Exercises
1. Suppose

St contains 100h Byte 100h contains 10h

DI contains 200h Byte 101h contains 15h

AX'contains 4142h Byte 200h contains 20h

DF=0 Byte 201h - contains 25h

Give the source, destination, and valu# moved for each of the fol-

lowing instructions. Also give the new contents of Sl and DI.

a. MOVSB

MOVSEW

C. STOSH .

d. STOSW

c. LOD3B

f. LODSW

2. ‘Suppose the following declarations have been made:

STRING1l DB ‘FGHIJ’
STRING2 DB ‘ABCDE’
DB 5 DUP (?)

Wirite instructions to move STRING] to the end of STRINGZ pro-
ducing the string “ABCDEFGHI}”.

226"

Programming Exercises

Write instructions to exchange STRINGI1 and STRING2 in exercise 2.
You may use the five bytes after STRING2 for temporary storage.

An ASCIIZ string is a string that ends with a O byte; for example,

STR DB ‘THIS IS AN ASCIIZ STRING',O

Write a procedure LENGTH that receives the address of an ASClIZ
string in DX, and returns its length in CX.

Use the addressing modes of Chapter 10 to write instructions
equivalent to cach of the following string instructions. Assume
where necessary that SI already has the offset address of the
source string, DI has the offset address of the destination string,
and DF = 0. You may use AL for temporary storage. For SCASD
and CMPSB, the flags should reflect the result of the comparison.
a. MOVSB

STCEB

LOLSB

SCASE

CMPSB

Suppose the following string has been declared:

T QangC

STRING DB ‘'TH"3* G*$% AR* B*ASTS’
Wirite instructions that will cause each “*” to be replaced by “L”.
Suppose the following string has been declared:

STRINGL ©& ‘T 4 1 2 1 8 A T E 3 U

3TRING2 DB 11 YR (7

Write some code that will cause STRING1 to be copied into
STRING2 with the blank characters removed.

Programming Exercises

8.

A palindrome is a character string that reads the same forward or
backward. In deciding it a string is a palindrome, we ignore
blanks, punctuation, and lctter case. For example “Madam, I'm

1

Adam” or “A man, a plan, a canal, Panamua!
Write a program that (a) lets the user input a string, (b) prints it
forward and backward without punctuation and blunks on succes-
sive lines, and (c) decides whether it is a palindrome and prints
the conclusion. I
In spreadsheet applications, it is useful to display numbers right-
justified in fixed ficlds. For example, these numbers are righit-justi-
fied in a field of 10 characters:

1349
2342545
Write a program ' to read ten numbers of up lo 10 digits cach, and
display them as above.’

Chapter 11 The String Instructions 227

10. A character string STRING1 precedes another string STRING2 al-

- phabetically if (a) the first character of SIRING1 comes before the
tirst character ot STRING2 alphabetically, or (b) the tirst N - 1
characters ot the strings are identical, but the Nth character ot
STRING1 precedes the Nth character of STRING2, or (¢) STRINGT -
matches the beginning of STRING2, but STRINGZ2 is longer.

Write a program that lets the user enter two character strings on
scparate lines, and decides which string cumes first alphabetically,
or if the strings arc identical.

11. " INT 21h, function 0Ah, can be used to read a character string.
‘The first byte of the array to hold the string (the string butfer)
must be initialized to the maximum number of characters ¢x-
‘pected. After execution of INT 21h, the second byte contains the

" actual number of characters read. Input ends with a carriage re-
turn, which is stored but not included in the character count. 1

_the user enters more than the expected number ol characters, the -,
computer beeps.., ’ '
Write.a program that prints a “?"; reads a character string o up
to 20 characters using INT 21h, function OAb; and prints the
string on the next lind, Set up the string butter like this:

'SIKINU * LABEL BYTE

MAX LEN LB 20 JmAaximum ne. Ui chars expec:ied
C‘.‘_'-’N o ? sactual nc. of chaers read
CHAKE OB 21 DUP (?),;20 byres teor string

;extra byte ror carriaye
;return)

12, Write a procedure INSERT that will insert a string STRINGT into a
string STRING2 at a specified point.

Input

SI offset address of STRING1

Di offset address of STRING2

BX length of STRING1

CX length of STRING2

AX offset address at which 1o insert STRING !

Output
DI offset address of new string
. BX length of new string

The proceduré may assume that neither string has 0 tength, and
that the address in AX is within STRING?2

Write a program that inputs twq strings STRING1 and SI}\INC,_, a
nonnegative decimal integer N, 0 <= N <= 40, inscerts STRING1

into STRINGZ2 at position N bytes after the beginning of -
STRING2, and displays the resulting string. You may assumie thut-,
N <= length of STRING2 and that the length of each smng, is Tuss !
than 40.) .

228

Programming Exercises

13. Wirite a procedure DELETE that will remove N bytes from a string

at a specified point and close the gap.

Input -

DI offset address of ‘string

BX length of string

CX number of bytes N to be removed

S offset address within string at which to remove bytes
Output

Di offset address of new string

BX length of new string

The procedure may assume that the string has nonzero length,
the number of bytes to be removed is not greater than the length
of the string, and that the address in Sl is within the string.

Write a program that reads a string STRING, a decimal integer S
that represents a position in STRING, a decimal integer N that rep-
resents the number of bytes to be removed (both integers be-
tween' 0 and 80),-calls DELETE to remove N bytes at position §,
and prints the resulting string. You may assume O<NsL-§,
where L = length of STRING.

Part Two

Aclvanced Topics

Text Display and

Keyboard

Progiramming

Overview

One of the most. interesting and useful applications of assembly lan-
guage is in Lontmllm;, the monitor display. [n this chapter, we program such
operations as moving the cursor, scrolling windows on he screen, and dis-

"playing characters with various attributes. We also show how to program the

keyboard, so that if the user presses a key, a screen control function is per-
tormed; for example, we'll show how to make the arrow keys operate.

« The.display on the screen is determined by data stored in memory.
The ch.lptcr blgins with a discussion of how the display is generated and
how it can be controlled by altering the display memory directly. Next, we'll
show ho\s te do scréen operations by using BIOS funcu, a calls. ‘These func-
tions carl also be Used to detect. keys bun;> pressed; as a denanstration, we'll
write 3 sitiple screen edltor

12.1
The Monitor

A computer. monitor operate> an the same priniciple as a TV set. An

~electron gun is used ‘to.shoot a streari.of electrons at a phosphaor screen,

creating a bright spot. Lines are generated by swecping the stream across the
screcn; dots are created by turning the beam on and off as it moves.

A raster'of lines is created by starting the beam at the top left corner,
sweeping it to 'the right, then turning it off and repositioning it at the be-
ginning of the next line. This process is repeated until the last line has been
traced, at which point the beam is rcposmoncd at the top left corner and

“the progess is rcpe.md IR

231

232 1222 Video Adapters and Display Modes

.

There are two kinds of monitors: monochrome and color. A mono-
chrome monitor uscs a single electron beam and the screen shows only one
color, typically amber or green. By varying the intensity of the electron beam,
dots of different brightness can be created; this is called a gray scale.

" For a color monitor, the screen is coated with three kinds of phos-
phors capable of displaying the three primary colors of red, green, and biue.
‘Three electron beams are used in writing dots on the screen; each one is
used to display a different color. Varying the intensity of the electron beams
produces different intensities of red, green, and blue dots. Because the red,
green, and blue dots are very close together, the human eye detects a single
homogeneous color spot. This is what makes the monitor show different
colors.

' Video Adapters an
-Display Modes

Video Adapters

- The display on the monitor is controlled by a circuit in the computer

" aalled a video adapter. This circuit, which is usually on an add-in card,

has two basic units: a display memory (also called a vidco buffer) and
a video controllcr.

The display memory stores the information to be displayed. It can
be accessed by both the CPU and the video controller. The memory address
starts at segment AOOOh and above, depending on the particular videe
adapter.

The video controller reads the display memory and generates appro-
priate video signals for the monitor. For color display, the adapter can either
gencrate three separate signals for red, green, and blue, or can gencrate a
composite output when the three signals are combined. A composite monitor
uses the composite output, and an RGB monitor uses the separate signals.
The composite output contains a color burst signal, and when this signal is
twened off, the mionitor displays in black and white.

Display Modes

We commonly sce both text and picture images displayed on the mon- .
itor. The computer has different techniques and memory requirements for dis--
playing text and picture graphics. So the adapters have two display modes: text
and graphics. In text mode, the screen is divided into columns and rows,
typdcally 80 columins by 25 rows, and a chaacter is displayed at cach screen
position. in graphics mode, the screen is again divided into columns and

Table 12.1 Video Adapters

Mnemonic Stands For

MDA Monochrome Display Adapter
CGA Color Graphics Adapter

EGA Enhanced Graphics Adapter
MCGA Multi-color Graphics Array

VGA Video Graphics Array

Chapter 12 Text Display-and Keyboard Programming 233

rows, and each screen position is called a pixel. A picture can be displaycd
by specifying the color of each pixcl on the screen. In this chapter we con-
centrate on text mode; graphics mode is covered in Chapter 16.

. Let's take a closer look at character generation in text mode. A char-
acter on the screen is created.from a dot array called a character ccll. The
adapter uses a character generator circuit to create the dot patterns. The
number of dots.in a cell depends on the resolution of the adapter, which
refers to the number of dots it can generate on the screen. The monitor also
has its own resolution, and it is important that the monitor be compatible

with the video adapter.

‘Kinds of Video Adapters

Table 12.1 lists the video adapters for the IBM PC. They differ in
rcsoluuon and the number of colors that can be displayed.

IBM introduced two adapters with the original I’'C, the MDA (Mono-
chrome Display Adapter) and CGA (Color Graphics Adapter). The MDA can
only display text and was intended for business software, such as word pro-
cessors and spread sheets, which at that time did not use graphics. It has
good resolution, with cach character cell being 9 x 14 dots. The CGA can
dlsplay in color both text and graphics, but it has a lower resolution. In text
mode, each character cell is only 8 x 8 dots.

In 1984 IBM introduced the EGA (I'.nhanced Graphics Adapter), which
has 'good resolution and color graphics. The character cell is 8 x 14 dots.

" In 1988 IBM introduced the PS/2 models, which are equipped with

_the VGA (Video Graphics Array) and MCGA (Multi-color Graphics Array)

adapters. These adapters have better resolution and can display more colors
in graphics mode than EGA. The character cell is 8 x 19,

Mode Numbers

Depending on the kind of adapter present, a program can select text
or graphics modes. Lach mode is identified by a mode number; Table 12.2
lists the text modés for the dilferent Kinds of adapters.

Table '12.2 Video Adapter Text Modes

Mode Number
0

3
"7

Description

40 x 25 16-color text
(color burst off)

40 x 25 16-color text
80 x 25 16-color text
{color burst.off)

80 x 25 16-color text

Adapters
CGA.EGA,MCGA,VGA

CGA EGAMCGAVGA
CGA EGA MCGAVGA

CGAEGAMCGA VGA

80 x 25 monochrome text MDA EGA VGA

Note: For modes 0 0 and 2 the color burst signal is turned off for composite monitors;
RGB monitors will display 16 colors.

IS

B

234 12.3 TJext Mode Programming

12.3
Text Mode As discussed earlier, the screen in text mode is usually divided into
programming 80 columns by 25 rows. llowever, a 40-column by 25-row display is also

possible for the color graphics adapters.

A position on the screen may be located by giving its (column. row)
coordinates. The upper left corner has coordinate (0,0); for a 80 x 25 aispiay,
rows are 0-24 and columns are 0-79. Table 12.3 gives the coordinates of
some screen positions.

The character displayed at a screen position is specified by the con-
tents of a word in the display memory. The low byte of the word contains
the character’s ASCII code; the high byte contains its attribute, which tells
how the character will be displayed (its color, whether it is blinking, under-
lined, and so on). Actually, all 256 byte combinations have display characters
(sec Appendix A). Attributes are discussed later.

Display Pages

For the MDA, the display memory can hold one screenful of data.
The graphics adapters, however, can store several screens of text data. This
is because graphics display requires more memory, so the memory unit in a
graphics adapter is bigger. To fully use the display memory, a graphics adapter
divides its display memory into display pages. One page can hold the data
for one screen. The pages are numbered, starting with 0; the number of pages
available depends-on the adapter and the mode selected. If more than one
page is available, the program can display one page while updating another
one,

Table 12.4 shows the number of display pages for the MDA, CGA,
EGA, and VGA in text mode. In the 80 x 25 text mode, each display page
is 4 KB. The MDA has only one page, page 0; it starts at location B0O0OO:0000h.
he CGA has four pages, starting at address B8OO:0000h. In text mode, the
EGA and VGA can ¢mulate either the MDA or CGA.

Table 12.3 Some 80 x 25 Screen Positions

Position Decimal Hex
Column Row Column Row
Upper left corner 0 0 0 o
Lower left corner 0 .24 : 0 18
Jpper nght corner 73 0 aF 0]
ower rnight correr 75 24 4t 18
Zenter of the screen 39 12 27 C

Table 12.4 Number of Text Mode Display Pages

Maximum Number of Pages

Modes CGA EGA VGA
T0-1 8 8 ' 8

2-3 4 8 8

7 NA 8 8

Chapter 12 Text Display and Keyboard Programming 235

The Active Display Page

The active display page is the page currently being displayed: For
80 x 25 text mode, the memory requirement is 80 x 25 = 2000 words = 4000
bytes (thus the display does not use up all the 4 KB, or 4096 bytes, in the
page). The video controller displays the {irst word in the active display page
at the upper left corner of the screen (column 0, row 0). The next word is
displayed in column 1, row 0. In general, the active display page is displayed
on the screcen row by row; this means that the screen may be considered as
the image of a two-dimensional array stored in row-major order.

‘ .

12.3.1
The Attribute Byte

In a display page, the high byte of the word that specifies a display
character is called the attribute byte. It describes the color and intensity
of the character, the background color, and whether the character is blinking
and/or underlined.

16-Color Display

_ The attribute byte for 16-color text display (imodes 0-3) has the for-
mat shown in Figure 12.1. A 1 in a bit position sclects an attribute charac-
teristic. Bits 0-2 specify the color of the character (foreground colory and bits
4-6 give the color of the background at the character’s position. For example,
to display a red character on a blue background, the attribute byte should
be 0001 0100 = 14h. -

By adding red, blue, and green, other colors can be created. On the
additive colar wheel (Figure 12.2), a complement color can be produced by
adding adjacent primary colors; for example, magenta is the sum of red and
blue. To display a magenta character on a cyan background, the attribute is
0011 0101.= 35h. :

If the intensity bit (bit 3) is 1, the foreground color is lightened. If
the blinking bit (bit 7) is 1, the character turns on and off. Table 12.5 shows
the possible colors in 16-color display. All the colors can be used for the color
of the character; the background can use only the basic colors.

Monochrome Display

For monochrome display, the possible colors arce white and black.
For white, the RGB bits arc all 1; for black, they are all 0. Normal video is
a white character on a black background; the attribute byte is 0000 0111 =
7h. Reverse video is o black character on a white background, so the attri-
bute is 0111 0000 = 70h. ’

Figure 12.1 Attribute Byte

LI TP
Bt 7 6 S 4 3 2 1 0
BLR G B INR G B
<Background> <foreground>

i

BL = blinking IN = intensity
R=red G=aqreen B=blue

236 12.3 Text Mode Programming

Figure 12.2 Additive Color
Wheel

MAGENTA

YELLOW

As with color display, the intensity bit can be used to brighten a
white character and the blinking bit can turn it on and off. For the mono-
chrome adapter only, two attributes give an underined character. They are
01h for normal underline and 0%h for bright underline. Table 12.6 lists the

possible monochrome attributes.

TJahle 12.5 Sixteen-Color Text Display

Basic Colors

Bright Colors

IRGB
0000
0001
OO'I‘O
06011
0100
0101

0110

o011

0000
1000
1001
1010
1011
1100
1701
1110
ENRE}

I = intensity, R = red, G = green, B = blue,

Color
black

blue
green

cyan

red

magenta
brown

white

black

gray

light biue
light green
light cyan
light red

light magenta
yellow -
intense white

Table.12.6 Monochrome Attributes
‘ Attribute’Byte

Binary

0000 0000
0000 0111
0000 0001
0000 1111
0000 1001
0111 0000
<1000 0111
1000.1111
1111 11N
1111 0000

12.3.2
A Display. Page
Demonstration

To display a character with

Hex

00
07
01

OF
09
70
80
8F
FF

FO

Chapter 12 Text Display and Keyboard Frogramming 237

Result

black on black

normal (white on black)
normal underline

bright (intense white on black)
bright underline

reverse video (black on white)
normal blinking ;
bright blinking

bright blinking

reverse videp blinking

attribute at any screen position, it is only

necessary to store the character and attribute at the corresportding word in
the active display page. The following program fills the color screen with
red “A”s on a blue background.

Program Listing PGM12_1.ASM
TITLE PGM12_1:
SMALL

1

2 .MODEL
3 .STACK
-4 .CODE
5-

6

7

8

MAIN

;set DS

9:
10:.

11: ;£fill active display page

100H

PROC

to active display

MOV
MOV
MOV
MOV

12: FILL_BUF:

13: MOV
14: ADD
15: LOOF
16: ;dos exit

17: © MOV
18: . INT
19: MAIN ENDP
20: END

.

SCREEN DISPLAY 1

AX, 0B80Oh
DS, AX
cx,2000
DI1,0

(D1],1441h

DI, 2

FILL_BUF
.

AH, 4CH

21H

MAIN .

page
;color active display page

" ;80 x 25 = 2000 words

sinitialize DI

;red A on blue
;go to next word
;locp until done

-+ 2 To display a red “A” on a blue background at a screen position, the
corresponding active display page word should contain 14h in the high byte
. and 41h in the low byte.

23¢ - 123 Text Mode Programiming

The program begins by ihitializing DS to the video buffer segiment,
which is B80Oh for a color adapter. Loop counter CX is set to 2000—the
number of words in the active display page—and DI is initialized to 0. At
line 13, the program enters a loop that moves 1441h7into cach word of the
video bulffer. '

After the program is run, the screen positions retain the same attri-
butes unless another program changes it or the computer is reset.

12.3.3
INT 10H

Lven though we can display data by moving them directly into the
active display page, this is a very tedious way to contrdt the screen.

Instead we use the BIOS video screen routine which is invohked by
the INT 10h instruction; a video function is selected by putting a function
number in the AH register. .

[n the following, we discuss the most important INT 10h functions
used in text mode and give examples of their use. The INT 10h functions
used in graphics mode are discussed in Chapter 16. Appendix C has a more
complete list.

INT 10h, Function 0:
Select Display Mode

!

’ Input: AH =0

| Al = mode number (scc Table 12.2)
L Output: nonc

Example 12.1 Sct the CGA adapter for 80 x 25 color text display.

Solution:

WOR ;select display mede functicn
MOV ;EOR2S molor text mods

INT ;sclect mode .

when BIOS sets the display mode, it also clears the screen.

I

INT 10h, Function 1:
Change Cursor Size

Input: AH =1
CH = starting scan line
CL = ending scan line
Qutput: none

In text mode, the cursor is displayed as a small dot array at a screen position
(in graphics mode, there is no cursor). For the MDA and EGA, the dot array
has 14 rows (0-13) and for the CGA, there are 8 rows (0-7). Normally only
rows 6 and 7 are lit for the CGA cursor, and rows 11 and 12 for the MDA

, .and.EGA cursor: To change the ciursor size, put the starting and ending num-

bers of the rows to be lit in CH and CL, respectively.

“Chapter 12 Text Display and Keyboard Programming 239

Example 12.2 Make the cursor as large as possibie for the MDA.

Solution:
-
MOV _AH,1 ;cursor size function
OV CH, 0 istarting. row
MOV, CL, 13 . ;ending row
INT 10H. ;change cursor size

"“INT 10h, Function 2:
Move Cursor

Input: Alv =2
- DH = new aursor tow (0-24)
DL = new cursor column. 0-79 for 80 x 25 display,
" 0-39 for 40 x 25 display
BH = page number ~
Output: none :

THis function lets the program move the cursor anywhere on the screen. The
page doesn’t have to be the one currently being displayed.

Example 12.3 Move the cursor to the center of the 80 x 25 screen on
page O.

Solution: The center of the 80 x 25 screcn is column 39 = 27h, row 12
= 0Ch.

MOV 2H,2 ;move cursor furction
XOR PH,BH ;page 0 '

MOV DX, 0C27h srow = 12, column = 39
INT 1GH JMOVE Cursor

== INT 10h, Function 3:
Get Cursor Position and Size

Input: - Al{ =3
BH = page number
Output: DH = cursor row

DI = cursor column |
CH = cursor starting scan line
.. CL = cursor vending scan line

For some applications, such-as moving-the cursor up one row, we need to
Know its current Jocation. ’

240

12.3 Text Mode Programming

Example 12.4 Move the cursor up one row if not at the top of the
screen on page 0.

Aglution:
i MOV AH, 3 ;read cursor location function
XOR BH, BH :page O
INT 1CH ;DH = row, DL = column
OR DR, DH ;cursor at top of screen?
Jz EXIT ;yes, exit
MOV AH, 2 ;mave cursor function
DEC DH ;Jrow = row - 1
INT 10H ;move cursor
EXIT:
INT 10h, Function 5:
Select Active Display Page
Input: AH =35
AL = active display page
0-7 for modes 0, 1
0-3 for CGA modes 2, 3
0-7 for EGA, MCGA, VGA modes 2, 3
0-7 for EGA, VGA mode 7
Output: none

This function selects the page to be displayed.

Example 12.5 Select page 1 for the CGA.

Solution:

MOV AH, 5 ;select active display page function
MOV AL, 1 ;page 1 .
INT 10H ;select page

INT 10h, Function 6:
Scroll the Screen or a Window Up
l‘nput: AH =6
AL = number of lines to scroll (AL = 0 means
scroll the wholc screen or window)
BH = attribute for blank lines
CH,CL. = row, column for upper left corner of window
DH,DL = row, column for lower right corner of window
Output: none

Scrolling the screen up one line means moving each display line up one row,
and bringing in a blank line at the bottom. The previous top row disappears
from the screen.)

Chapter 12 Text Display and Keyboard Programming 241

The whole screen orany tectangular area (window) may be scrolled.
AL contains the number of lines to be scrolled. If AL = O, all the lines are
scrolled and this prowdes a way 10 clear the screen or a window. CH and CL
pi 34 g
get the row and column’of the upper left corner of the window, and DH and
DL get the row and column of the lower right corner. BH contains the attri-
bute for the blank lines.

Example 12.6 Clear the screen to black for the 80 x 25 display.

Solution:
MOV :94,6 i - ;scroll up® function
., XOR AL,AL - ;clear whole screen
XOR CX,CX ;upper left corner is (0,0)
MOV DX, 184Fh. , ;lower right corner is (4Fh,18h)
MOV. BH, 7?7 R ;normal video attribute

~INT 10H) ;clear screen

INT 10h, Function 7:
Scroll the Screen or a Window Down

‘Input: - AH =7
- AL = number of llnes to scrojl (4L = O :ncans
- the whale screer: or window)
BH = attribute for blank lines
CH,CL = row, column for upper left corner of window
DH,DL = row, columnn-for lower right corner of window
Output: none :

if the screen or window is scrolled down one line, each line moves down
one row, a blank line is brought in at the top, and the bottom row disappears.

INT 10h, Function 8:
Read Character at the Cursor

Input: ‘AH =8
BH = page number
Output: AH = attribute of character
o =« - - AL = ASCII code of character

In some applications, we need to know the character at the cursor
position. BH contains a page number, which doesn’t have to be the one
being displayed. After execution, AL contains the ASCIH! code of the character,
and AH contains its attribute. We’ll see an example that uses this function
in a moment. Let's first look at a function that writes a character.

242 12.3 Text Mode Programming

INT 10h, Function 9:
Display Character at the Cursor with Any Attribute

Input: AH=9
BH = page number
AL = ASCII code of character

! CX = number of times to write character
BL = attribute of character

Output: none

With function 9, the programmer can specify an attribute for the character.
CX contains the number of times to display the character, starting at the

cursor position.

Unlike INT 21h, function 2, the cursor doesn’t advance after the
character is displayed. Also, if AL contains the ASCII code of a control char-
acter, a control function is not performed; instead, a display symbol is shown.

The following example shows how functions 8 and 9 can be used

together to change the attribute of a character.

Examplec 12.7 Change the attribute of the character under the cursor to

reverse video for monochrome display.

Solution:

MOV AH,8 ;read character

XOR BH,BH ;on page 0

INT 10H ;character in AL, attribute in AH
MOV AH, 9 ;display character with attribute
MOV CX,1 ;display 1 character

MOV BL, 70H ;reverse video altribute

INT 10H ;display character

INT 10h, Function Ah:
Display Character at the Cursor with Current Attribute

Input: AH = OAh
BH = page number
AL = ASCII code of character
- CX = number of times to write character
Qutput: none -

This function is like function 9, except that thé attribute byte {s not changed,

so the character is displayed with the current attribute.

Chapter 12 Text Display and Keyboard Programming 243

INT 10h, Function Eh:
Display Character and Advance Cursor

Input: AH = OEh
AL = ASCII code of character
BH = page number
BL = foreground color (graphics mode only)

Output: none

This function displays the character in AL and advances the cutsor to the
next position in the row, or if at the end of a row, it sends it to the beginning
of the next row. If the cursor is in the lower right corner, the screen is scrolled
up and the cursor is set to the beginning of the last row. This is the BIOS
function used by INT 21h, function 2, to display a character. The control
characters bell (07h), backspace (O8h), line feed (OAh), and carriage return
(ODh) cause control functions to be performed.

INT 10h, Function Fh:
Get Video Mode

Input: AH = OFh

Output: AH = number of screen columns
AL = display mode (see Table 12.2)
BH = active display page

This function can be used with function 5 to switch between pages being
displayed. :

Example 12.8 Change the display page from page O to page 1, or from
page 1 to page O.

Solution:

MOV AH, OFH sget video mode
INT 10H ;BH = active page
MOV AL, BH :smove to AL

XOR AL,1 ;complement ‘bit 0
MOV AH,S 7select active page

INT 10H ;select new page

12.34
4 Comprehensive
Example

To demonstrate several of the INT 10h functions, we write a program
to do the following:

1. Set the display to mode 3 (80 x 25 16-color text).

.2. Clear a window with upper left corner at column 26, row 8, and
lower right corner at column 52, row 16, 'to red.

244

124

12.4 The Keyboard

37 Move the cursor to column 39, row 12,
4. Print a blinking, cyan “A” at the cursor position.

If you have a color adapter and monitor, you can see the output by running
the program m program listing PGM12_2.ASM.

Program Listing PGM12_2.ASM
TITLE PGM12_2: SCREEN DISPLAYm2

" ;red screen with blinking cyan ‘A’ in middle of screen

.MODEL SMALL
.STACK " 100H
.CODE .
MAIN - PROC
;set video mode
MOV AH, 0 . ;select mode function
MOV - AL, 3 ;80x25 color text
INT 1o - ;select mode
;clear window to red
MOV AH, 6 . ;scroll up function
MOV CX,C81Ah ;upper left corner (1Ah,08h)
MOV DX,1034h ;lowexr right corner (34h,10h)
MOV ‘BH, 43H :cyan chars on red background
MOV . AL,0Q © ;scroll all lines
INT .10H ;clear window
;move cursor
MOV AH,2 ;move cursor function
MOV DX,CCZ?h ;center of screen
XOR BH, BH ;page 0
INT 10H ;move cursor
;display character with attribute
MOV AH,08 ;display character function
MOV BH, 0 ;page 0
MOV BL, OC3H ., :blinking cyan char, red back
MOV CX,1 : ;display one character
MOV AL, ’A’ - ;character is ‘A’

INT 10H ;display character
;dos exit .
MOV AH, 4CH
INT 21H
MAIN ENDP
END MAIN

The Keyboard

There are several keyboards in use for the IBM PC. The original key-

board has 83 keys. Now, more computers use the enhanced keyboard with
101 keys. In general, we can group the keys into three categories:

1. ASCI keys; that is, keys that correspond to ASCII display and con--
trol characters. These include letters, digits, punctuation, arithme-
tic and other special symbols; and the control keys Esc (escape),
Enter (carriage return), Backspace, and Tab.

Chapter 12 Text Display and Keyboard Programming 245
R Y

2 Shift’ keys left and right shifts, Caps Lock Ctrl, Alt, Num Lock,
and Scroll Lock. These keys are Usually used in combination with
otlier keys.

3. Function keys: F1-F10 (F1-F12 for the enhanced keyboard), the ar-
row keys, Home, PgUp, PgDn, End, Ins, and Del. We call them
function keys because they are used in programs to perform

special functions.

Scan Codes

Rach key on the keyboard is assigned a unique number called a scan
. code; when a key is pressed the keyboard circuit sends the corresponding
scan Code’to the computer. Scan codé values start with 1; Table 12.7 shows
the scan codes of shift and finction keys. A complete list of scan codes for
- the 101-key keyboard may bé found in.Appendix H.

You may wonder how the computer detects a combination of keys,
such as the Ctrl-Alt-Del combination ‘that resets the computer. There must
be a way for the computer to Know that a key has been pressed, but not yet
released.

To indicate a key’s release, the keyboard circuit sends another code
called a break code; derived from the key’s scan code by changing the msb

. to 1 (the scan code itself is also known as a make code). For example, the
make code for the Esc kéy is 01h and its break code is 81h.

The computer does not store informatiorn on every key that is pressed
and not yet released; it only does so for the function key Ins, and the shift
keys. This informatiqn is saved as individual bits called keyboard flags stored

Table 12.7 Scan Codes for shift and Function Keys

. Hex 'Decg'mal ey
10 - 129 .- It
2A 42 eft Shift
38 56) Alt
3A .58, aps Lock
38-44 .59-68 . 1-F10
45 ‘6'9 Jum Lock
46 JQ crofl Lock
47) 71 iome
48 72 Jp arrow
49 73 qUp -
48 ‘75 eft arrow
4C 7'6 eypad 5
4D 77 ight arrow
4F 79 nd
S0 80 own arrow
31 181 gOn
52 .82: 15

S3- ' 83. el

246

12.4 The Keyboard

in the byte at 0040:0017. A program can call a BIOS routine to investigate”
these flags.

The Keyboard Buffer

To prevent the user from typing ahead of a program, the computer
uses a 15-word block of memory called the keyboard buffer to store keys
that have been typed but not yet read by the program. Each keystroke is
stored as a word, with the high byte containing the key’s scan code, and the
low byte containing its ASCII code if it’s an ASCII key, or 0 if it's a function
key. A shift key is not stored in the buffer. When a left or right shift, Ctrl,
or Alt key is down, some keys will cause a combination key scan code to be
placed in the keyboard buffer (see Appendix H).

The contents of the buffer are released when a program requests key !
inputs. The key values are passed onto the program in the same order that -
they come in; that is, the keyboard buffer is a quecue. If a key input is re-
quested and the buffer is empty, the system waits until a key is pressed. If
the buffer is full and the user presses a key, the computer sounds a tone.

Keyboard Operation

To summarize the preceding discussion, let’s see what happens when
you press a key that is read by the current executing program:

1. The'keyboard sends a request (interrupt 9) to the computer.

2. The interrupt 9 service routine obtains the scan code from the
keyboard 1/O port and stores it in a word in the keyboard buffer
(high byte = scan code, low byte = ASCII code for an ASCII key, 0
for a function key).

3. The current program may use INT 21h, function 1, to read the
ASCH code. This also causes the ASCII codce to be displayed
{echoed) to the screen.

In the next section, we'll show how a program can process keyboard
inputs using INT 16h. To get both the scan code and ASCII code, a program
may access the keyboard buffer directly or use the BIOS routine INT 16h.

INT 16H

BIOS INT 16h provides keyboard services. As with INT 10h, a pro-
gram can request a service by placing the function number in AH before
calling INT 16h. In what follows, we usc only function 0.

INT 16h, Function 0:
Read Keystroke

Input: AH =0
Output: Al. = ASCH code if an ASCII key is pressed
= 0 for function keys
AH = scan code of key

This function transfers the first available key value in the keyboard buffer
into AX. If the buffer is empty, the computer waits for the user to press
key. ASCil keys are not echoed to the screen.

Chapter 12 Text Display and Keyboard Programming 247

The function provides a way for the program to decide if a function

'key is pressed. If AL = 0, this must be the case, and the program can check :

the scan code in AH to see which key it is.

" Example 12.9 Move the cursor to the upper left comer if the F1 key is

pressed, to the lower right comer if any other function key is pressed. If a
character key is pressed, do nothing.

Solutlox;:

* MOV AH,0 ;read keystroke function

INT 16H ;AL = ASCI1 code or 0,
) L ;AH = scan code

OR AL, AL ;AL = 0 (function key) ?
JNE EXIT ;no, character key
CMP AH, 3BH ;scan code for Fl1 ?
JE Fl ;yes, go to move cursocr

;other function key

DX, 184FH

MOV ;lower right corner

JMP EXECUTE ;go to move cursér
F1:

XOR DX,DX ;upper left corner
EXECUTE:

MOV AH, 2 ;move cursor function

XOR BH, BH ipage 0

INT 10H ;move cursor
EXIT:

12.5
A Screen Editor

To show how the function keys may be programmed, here is a pro- ,

gram that does some of the things that a basic word processor does. It first
clears the screen and puts the cursor in the upper left corner, then lets the
user type text on the screen, operate some of the function keys, and finally
exits when the Esc key is pressed.

Screen Editor Algorithm

Clear the screen -
Move the cursor &o the upper left corner
Get a keystroke '
WHILE key is not the Esc key DO
IF function key .
-THEN ‘
perform function
ELSE /* key must be a character key */
‘display character . '
END_IF
Get a keystroke
END_WHILE

The Esc key can be detected by checking for an ASCII code of 1Bh. To demonstr-
ate how the function keys can be programmed, a procedure DO_FUNCTION is
written to program the arrow keys. They operate as follows:

248

12.5 A Screen Editor

Up arrow. Causes the cursor to move up one row unless it's

at the top of the screen. If so, the screen scrolls down one line.
Down arrow. Causes the cursor to move down one row unless it’s
at the bottom of the screen. If so, the screen scrolls up one line.
Right arrow. Causes the cursor to move right one column, unless
it’s at the right margin. If so, it moves to the beginning of the
next row. But if it's in the lower right corner, the screen scrolls
up one line.

Left arow. Causes the cursof to move left one column, unless it's at
the left margin. If so, it moves to the end of the previous row. But if
it's in the upper right corner, the screen scrolls down one line.

DO_FUNCTION Algorithm .

Get cursor position;
Examine scan code of last key pressed;
CASE scan code OF

up arrow:
IF cursor is at the top of the screen /* row 0 */

THEN

scroll screen down
ELSE

move Cursor up one row
END_IF

down arrow:
IF cursor is at the bottom of the screen /* row 24 */
THEN
scroll screen up
ELSE
move cursor down
END_IF
left arrow:
IF cursor is not at beginning of & row /* column 0 */
THEN _
move cursor to the left
ELSE /* cursor is at beginning of a row */
" IF cursor is in row O /* position (0,0) */
THEN k '
scroll screen down
ELSE) .
move cursor to the end of previous row
END_IF <
END“IF
right arrow:
IF cursor it not at end of a row
THEN ’
move cursor to the right
ELSE /* cursor is at end of a row */
If cursor is in last row /* row 24 */

THEN
scroll screen up
ELSE
move cursor to the beginning of next row
CCENDIET ot o
END_IF

. END_CASE

Here

Chapter 12 Text Display

is the program:

‘Program Listing PGM12_3.ASM

0
1
2
3
4;
5:
6
-
8
9
1

0:
11:
12:
13:
i4:
15:
16:
17:
18:
19:
20:
21:
22:
23: -
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
~'38:,
39:
40:
41:
42:
43:
44
45:
-46:
47:
48:
49:
" 50:

©.51:

TITLE PGM12_3:

.MODEL SMALL
.STACK 100H
.CODE
MAIN PROC
;set video mode and clear
N MOV AR, 0
MOV AL, 3
INT 10H
;move cursor to upper left
MOV AH, 2
XOR pX, DX
MOV BH, 0
INT 10H
;get keystroke
MOV AH, D
. INT 164
WHILE :
CMP AL, 1BH
JE END_WHILE
;1if function key
CMP AL, O
JNE ELSE__
;then)
CALL DC_FUNCTION
Jmp NEXT_KEY
ELSE_: .
MOV AH,2
- MOV ‘DL, AL
INT 21H
NEXT_KEY:
MOV AH, 0
"INT 16H
JMP WHILE_
END_WHILE:
;dos exit
MOV AH, 4CH
INT 21H
MAIN ENDP
DO_FUNCTION PROT

operates the arrow keys

¢

; input: AH = scan code

; . output:. none
PUSH 'BX
PUSH CX°
- PUSH DX

. PUSH AX

;locate cursor
MOV AH,3 ..l
MOV BH, 0 :
-INT 104

and Keyboard Programming 249

SCREEN EDITOR

screen
;set mode function

;80 x 25 color text
;set mode

corner

;move cursor function
;position (0,0)

;page 0

;move cursor

:keyboard input function
;AH=scan code,AL=ASC1lI code

character)?

;ESC (exit
iyes, exit
;AL = 07

;no, character key

;execute function

;get next kcystroke
;display characuter
;display chagacter func
;get character

;display character

;get keystroke function
;AH=scan code,AL=ASCII code

;save scan code

c.

:iyget cursor position

t;on page 0
;DH = row,

DL col

250

12.5 A Screen Editor

(0. ®

52: POP AX ;retrieve scan code
53: ;case scan code of

54: CMP AH, 72 jup arrow?

55: JE CURSOR_UP ;yes, execute .
56: CMP AH,75 ;left arrow?

57: JE CURSOR_LEFT ;yes, execute

58: ol 14 AH,77 ’ ;xight arrow?

59: JE CURSOR_RIGHT ;yes, execute

60: CMP AH, 80 ;down arrow?

61: JE CURSOR_DOWN ;yes, execute

62: JMp EXIT ;other function key
63: CURSOR_UP:

64: CMP DH, 0 s;row 07?

65: . JE SCROLL_DOWN ;yes, scroll down

- 66: DEC DH ;no, row = row - 1
67: JMP EXECUTE ;go to execute

68: CURSOR_DOWN:

69: " CMP DH, 24 ;last row?

70: - JE SCROLL_UP ;yes, scroll up

71: INC DH ;no, row = row + 1
72: JMP EXECUTE ;go to execute

73: CURSOR_LEFT:

74: CMP pL, 0 ;column 0?

75: JNE GO_LEFT ;no, move to left
76: cMmp DH, 0 ;xow 0?

77 JE SCROLIL_DOWN ;yes, scroll down
78: DEC DH ;row = row - 1

79: MOV DL, 79 ;last column

80: JMP EXECUTE ;go to execute

81: CURSOR_RIGHT:

82: CMP DL, 79 ;last column?

83: JNE GO_RIGHT ;no, move to right
84: CcMP DH,24 ~~ ;last row?

85: JE SCROLL_UP ;yes, scroll up

86: INC DH ;row = row + 1

87: MOV DL, O icol = 0.

88: JMP EXECUTE ;go to execute

89: GO_LEFT:

90: DEC DL scol = col - 1

91: JMP EXECUTE ;go to execute

92: GO_RIGHT: '

93: INC DL scol = col + 1

94: JMP EXECUTE ;go to execute

95: SCROLL_DOWN: .

96: MOV AL,1 ;scroll 1 line

97: XOR CcX,CX ;upper left corner =
98: MOV DH, 24 ;last row

99: : MOV DL, 79 ;last column

1G60: MOV BH, 07 ;normal video attribute
101: MOV AH,7 ;scroll down function
102: INT 10H :;scroll down 1 line
103: JMP EXIT sexit procedure
104: SCROLL_UP: ’ :

105: MoV AL, 1 iscroll up 1 line
106: XOR cXx, CcX ;upper left corner = (0,0)

Chapter 12 Text Display and Keyboard Programming 251

107: MOV DX, 184FH ;lower rt corner (4Fh,18h)
108: MOV BH, 07 snormal video attribute
109: ‘MOV RH, 6 ;scroll up tunction
1lu: INT 104 :;scroll up

111: JMp EXIT sexit procedure

112: EXECUTE:

1id: MOV AH, 2 ;Cursor move function
114: INT 19H ;move cursor

145: EXIT:

116: POP DX

117: popP CcX

118: POP BX

119: RET

120: DO_FUNCTION ENDP

121: END MAJIN

‘The program begins by setting the video mode to 80 x 25 color text (mode
3). This also clears the screen. After moving the cursor to the upper left
corner, the program accepts the first keystroke and enters a WHILE loop at
line 17. AH has the scan code of the key, Al the ASCII code for a character
key, and O for a function key. If the key is the Esc key (AL = 18H4), the program
terminates. If not, the program checks for a function key (AL = 0). It so, the
procedure DO_FUNCTION is called. {f not, the key must have been a char-
acter key, and the character is displayed with INT 21h, function 2. This
function automatically advances the cursor after displaying the character. At
the bottom of the WHILE loop (line 30), another keystroke is accepted.

Procedure DO_FUNCTION is entered with the scan code of the last
keystroke in AH. This is saved on the stack (line 47), while the procedure
determines the cursor position (lines 49-51). Alter restoring the scan code
to AH (line 52), the procedure chiecks to see if it is the scan code of one of .
the arrow keys (lines 54-61). If not, the procedure terminates.

If AH contains the scan code of an arrow key, the procedure jumps
to a block of code where the appropriate cursor move is executed. DH and
D1. contain the row and column of the cursor location, respectively.

if the cursor is not at the edge of the screen (row 0 or 24, column
0 or 79), DH and DL arc¢ updated. To move up, the row number in DH is
decremented; to move down, it.is incremented. To move left, the column
number in DL is decremented; to move right, it is incremented. After updat-
ing DH and DL, the procedute jumps to line 112, where INT 10h, function
2, does the actual cursor move. -

For the up arrow key, if the cursor is in row 0 the procedure at line
64 jumps to code block SCROLL_DOWN, which scrolls the screen down one
line. Similarly, for the down arrow kuy, if the cursol is in row 24 the procedure
at line 72 jumps to code block SCROLL_UP where the screen is scrolled up
one line.

Fou the left arrow key, if the cursor is in the upper left corner (0,0)
the procedure jumps to SCROLL_DOWN (line 77). If it's at the left inargin
and not row 0, we want to move to the end of the previous row. To do this,
the row number in DH is decremented, DL gets 79, and the procedure jurnps
to line 112 to do the cursor move.

Similarly for the right arrow key, if the cursor is in the lower right
corner the procedure jumps to SCROLL_UP (line 85). If it's at the right maigin
and not row 24, we want to move to the beginning of the next row. To do

252

Summary

this, the row number in DH is incremented, DL gets 0, and the procedure
jumps to linz 112 to do the cursor move.

The program can be run by assembling and linking file

PGM12_3.ASM. As you piay with it, its shortcomings become apparent. For
example, text scrolled off the screen is lost. It is possible to type over text,
but not to insert or delete text.

Summary

A video adapter contains memory and a video controller, which
translates data into un image on the screen. The adapters are the
MDA, CGA, FEGA, MCGA, and VGA. They differ in resolution and
the number of colors they can display. .

There are two kinds of display modes: text mode and graphics
mode. In text mode, a character is displayed at each screen posi-
tion; in graphics mode, a pixel is displayed.

In text mode, a screen position is specified by its (column, row)
coordinates. A character and its attribute can be displayed at each
position.

In 80 x 25 text mode, the memory on the video adapter is di-
vided into 4-KB blocks called display pages. The number of pages
available depends on the kind of adaptcr. The screcn can display
one page at a time; the page being displayed is called the active

display page.

The display at cach screen position is specified by a word in the
active display page. The low byte of the word gives the ASCII
code of the character and the high byte its attribute.

The attribute byte specifies the foreground (color of the character)
and background at each screen position. Other attributes are
blinking and underline (MDA only).

For monochrome display, the foreground and background colors
are white (RGB bits all 1s) or black (RGB bits all 0’s). Normal
video attribute is O7h; reverse video is 70h.

BIOS interrupt INT 10h routine performs screen processing. A
number placed in AH identifies the screen function.

INT 16h. function 0, is a BIOS function for reading keystrokes.
AH gets the scan code, and AL the ASCII code for a character key.

For a function key, AH gets the scan code and AL = 0.

A program can use INT 16h and INT 10h to ‘program the func-
tion keys for controlling the screen display.

Chapter 12 Text Display and Keyboard Programming 253

Glossa-ry
" active display page
-at.tr‘il:)u-te
attrjbute byte

‘break code |

)

CGA’
character cell

‘display memory
display page

EGA
function Keys .

graphics mode
gray scale

Kkeyboard buffer

make code
MCGA

MDA

mode number '

normal video
resolution

‘reverse video’ .
scan codes

‘text mode

VGA ..

vidco adapter
video buffer

video controlier

The display page currently being shown
on the screen]
A number that specifies how a character
will be displayed

- The high byte of the word that specifies a

display character; it contains the
character’s attribute

Number used to indicate when a key is re-
leased—obtained by putting 1 in the msh
of a key’s scan code

Color Graphics Adapter

Dot array used 1o form a character on the
screen

Memory unit of a video adapter

The portion of display memory that |
holds one screenful of data

Enhanced Graphics Adapter

Keys that don’t correspond to ASCII charac-
ters or shifts ‘

Display mode that can show pictures
Different levels of brightness in mono-
chrome display

A 15-word block of memory used to hold
keystrokes

Same as scan code

Multi-color Graphics Array
Monochrome Display Adapter

A number used to select a text or graph-
ics display mode

White character on a black background
The number of dots a video adapter can
display :

Black character on a white background
Numbers used to identify a key

Display mode in which only characters
are shown

Video Graphics Array

Circuit that controls monitor display
The memory that stores data to be dis-
played on the monitor; same as display
memory

Control unit of a video adapter

254

Exercses

Exercises

1.

'To demonstrate the video butter, enter DEBUG and do the following:

a. If your machine has a monochrome adapter, use the R com-
mand to put BOOOh in 1)S; if it has a color adapter, put B800h
in DS.

b. We can now enter data directly into the video buffer, and see
the results on the screen. To do so, use the E command to en-
ter data, starting at offset 0. For example, to display a blink-
ing reverse video A in the upper left corner of the screen, put
41h in byte 0 and FOh in byte 1. Now enter different charac-
ter:attribute values in words 2, 4, and so on, and watch the
changes on the top row of the screen.

2. Write some code to do the following (assume 80 x 25 mono-

chrome display, page 0). Each part of this exercise is independent.

a. Move the cursor to the lower right corner of the screen.

b. Locate the cursor and move it to the end of the current row.

c. Locate the cursor and move it to the top of the screen in the
current column.)

d. Move the cursor to the left one position if not at the begin-
ning of a row.

e. Clear the row the cursor is in to white.
Scroll the column the cursor is in down one line (normat
video).

g- Display five blinking reverse video “A”s, starting in the upper
left corner of the screen,

Assuming 80 x 25 color display, write some codc to turn the color
of each capital letter character in row O to red and the local back-
ground to brown. Other characters should retain their previous
foreground and background colors. Assume page 0.

Programming Exercises

4. Write a program to

a. Clear the screen, make the cursor as large as possible, and
move it to the upper left corner.

b. Program the follow—ing function keys:

Home key: Cursor moves to the upper left corner.
End key: Cursor moves to the lower left corner.
PgUp key: Cursor moves to the upper right corner.
PgDn key: Cursor moves to the lower right comer.
Esc key: Program terminates.

Any other key: Nothing happens.

5. Wirite a program to

a. Clear the screen to black, move the cursor to the upper left
corner.
b. Let the user type his or her name.

Chabter 12 Text Display and Keyboard Programming 255

¢. Clear the input line, and display the name vertically in col-
umn 40, starting at the top of the screen. Use 80 x 25 display.
Faor MDA, display the name in reverse video. For color dis-
play, display it in green letters on a magenta background.

6. Write a program that does the following:

a. Clear the screen, move the cursor to row 12, column 0.
b. If the user types a character, the character is displayed at the
cursor position. Cursor does not advance.

c. Program the following function keys:

L]
Right Arrow: The program moves cursor and character to the
right one position, unless it is at the right margin. A blank ap-
pears at the cursor’s previous position,
Left Ammow: The program moves cursor and character to the left
one position, unless it is at the left margin. A blank appears at

the cursor’s previous position.
Escape: The program terminates.

Other function keys: Nothing happens.

7. Write a one-line screen editor that does the following:

a.
b.

Clear screen, and position cursor at the beginning of row 12.

Let the user type text. Cursor advances after each character is
displayed unless cursor is at the right margin. .

Left arrow moves cursor left except at left margin; right arrow
moves cursor right except at right margin. Other arrow keys
do not operate.

Ins key makes the cursor and cach character to the right of
the cursor (in the cursor’s row) move right one position. A
blank appears at the cursor’s previous position. The last char-
acter in the cursor’s row is pushed off the screen.

Del key causes each character to the right of the cursor (in
the cursor's row) to move left one position, and a blank is -
brought in at the right.

Esc key terminates the program.

13

Macros

Overview

. In previous chapters we have shown how programming may be sim-
plified by using procedures. In this chapter, we discuss a pro;,ram structure
called a mucro, which is similar to a procedure.

“As with procedures, a macro name represents a group of instructions.
Whenever the instructions are needed in the program, the name is used.
However, the way procedures and macros operate is different. A procedure

[is called at execution time; control transfers to the procedure and returns

after‘e.xecuting its statements. A macro is invoked at assembly time. The
assemnbler copies the macro’s statements into the program at the position of
the invocation. When the program cxecutes, there is no transfer of control.

. Macios are cspecially useful for carrying out tasks that occur fre-
quently. For example, we can write macros to initialize the DS and ES regis-
ters, print a character string, terminate a program, and so on. We can aiso
write macros to eliminate restrictions in existing instructions; for example,

the operand of MUL can’t be a constant, but we can write a multiplication
macro that doesn’t have this restriction.

13.1
Macro Definition
and Invocation

A macro is a block of text that has beén given a name. When MASM
encounters the name during assembly, it inserts the block into the program.

The text may consist of instrucuons, pseudo-ops, comments, or references
to other macros.

The syntax of macro definition is

macro_name " MACRO d1,d2,...dn
statements
ENDM

87

- 358

13.1 Macro Definition and Invocation

Here macro_name is the user-supplied name ior the macro.. The
pseudo-ops MACRO and ENDM indicate the beginning and ¢nd of the macro -
definition; d1, d2, .. . dn is an optional list of dummy arguments used by
the macro. . :

One usc of macros is to create new instructions. For example, we
know that the operands of MOV can’t both be word variabiés, but we can
get around this restriction by defining a macro to move a word:into a,@v,oid.

Example 13.1 Define a macro to move a word into a word.

Solution:

MOVW MACRO WORD1, WORD2
PUSH WORD2
POP WORD1
ENDM

lere the name of the macro is MOVW. WORD1 and WORD?2 are the dummy
arguments. : C

To use a macro in a program, we invoke it. The syntax is
macro_name al,az2, . . . an

where al, a2, ... an is a list of actual arguments. When MASM encounters
the macro narne, it expands the macro; that is, it copies the macro state-
ments into the program at the position of the invocation, just as if the user
had typed them in. As it copies the statements, MASM replaces each dummy
argument di by the corresponding actual argument ai and creates the ma-
chine code for any instructions. ’

A macro definition must come before its invocation in a program
listing. To ensure this sequence, macro definitions are usually placed at the
beginning of a program. It is also possible to create a library of macros to be
used by any program, and we do this later in the chapter.

Example 13.2 Invoke the macto MOVW to move B to A, where A and
B are word variables. :

Solution: MOVW A,B

To expand this macro, MASM would copy the macro statements into
the program at the position of the call, replacing each occurrence of WORD1
by A, and WORD2 by B. The tesuit is

PUSH B
POP A

o T
In expanding a macro, the assembler simply substitutes the character
strings defining the actual arguments for the corresponding dummy ones.
For example, the following calls to the MOVW macro -

MOVW A, DX and - MOVW A+2,B
cause the assembler to insert this code into the program:

PUSH DX and ’ PUSH B
POP A POP A+2

Chapter 13 Macros 259

lilegal Macro Invocations

There are often restrictions on the arguments for a macro. For ex-
amiple, the arguments in the MOVW macro must be memory words or 16-bit
registers. The macro invocation

MOVW AX, 1ABCh
generates the code

PUSH 1ABCh
POP AX

and because an immediate data push is illegal (for the 8086/8088), this results
in an assembly error. One way to guard against this situation is to put a
comment in the macro; for example, -

MOVW MACRO * WORD1, WORD2

;arguments must be memory words or lG-bit 1egisters
PUSH WORD2
poP WORD1
ENDM

Restoring Registers

Good progranuning practice requires that a procedure should restore
the registers it uses, unless they contain output values. The same is usually
true for macros. As an example, the following macro exchanges two memoiy
words. Because it uses AX to perform the exchange, this register is restored.

* iS°CH MACRO WORD1, WORD2
PUSH AX
MOV AX,WORD1
XCHG AX,WORD2
MOV WORD1, AX
POP AX
ENDM

M cro Expansion in the LS T File

The .LST file is one of the files that can be generated when a program
is assembled “ee Appendix D). It shows assembly code and the corresponding
machine code, addresses of variables, and other intormation about the pro-
gram. The LS file also shows how macros are expanded. To demonstrate
this, the foll wiag program contaitis the MOVW macro and two invocations:

Program Listing PGM13_1.ASM
TITLE PGML3_1: MACRO DEMO
.MODEL SMALL

MOVW MACRO WORD1,WORD2

PUSH WORD2
POP WOFRD1
ENDM
.5TACK 100H
.DATA
A DW 1,2 .
B bW 3 :

.CODE

260 13.1 Macro Definition and Invocation

MAIN PROC
: MOV AX, ¢DATA
MOV DS, AX
MOVW A, DX
MOVW A+2,B

;dos exit
MOV AH, 4CH
INT 21H

MAIN ENDP
END MAIN

Figure 13.1 shows file PGM13_1.LST. In this file, MASM prints the
macro invocations, followed by their expansions (shown in boldface). The
digit 1 that appcars on each line of the expansions means these macros were
invoked at the “top level”; that is, by the program itself. We will show later
that a macro may invoke another macro.

.

Figure 13.1 PGM 13_1.LST

Microsoft (R) Macro Assembler Version 5.10
1/18/92 00:03:08 . ‘
PGM13_1: MACRO DEMO Page 1-1
TITLE PGM13_1: MACRO DEMO
.MODEL SMALL
MOVW MACRO WORD1, WORD2
PUSH WORD2
POP WORD1
ENDM
.STACK 100H
.DATA
0000 0001 0002 A DW 1,2
0004 0003 B DW 3
S . .CODE
0000 MAIN | PROC
0000 B8 — R . MOV AX, @DATA
0003 B8E DB) MOV DS, AX
MOVW A,DX
0005 52 : 1 PUSH DX
0006 8F 06 0000 R 1 POP A
) MOVW A+2,B
O000A FF 36 0004 R 1 o PUSH B
000E "8F 06 0002 R 1 POP A+2
- ;dos exit
0012 B4 4C MOV AH, 4CH
0014 CcD 21 ° INT 21H
0016- MAIN ENDP
END MAIN ..
Microsoft (R) Macro Assembler Version 5.10
1/18/92 00:03:08
PGM13_1: MACRO DEMO Symbols~1
Macros:

Figure 13.1 PGM13_1.LST

(Continued)

Chapter 13 Macros

261

N._a.-m e e LT Lines
MOVW . .2
Segments and Groups:
i N am e Length Align Combine Class
DGROUP GROUP
_DATA 0006 WORD PUBLIC ' DATA’
STACK 0100 PARA STACK ' STACK'
_TEXT 0016 WORD PUBLIC *CODE’
Symbols: *
N ame - Type Value Attr
A L WORD 0000 _DATA
B . L WORD 0004 _DATA
MAIN . . N PROC 0000 TEXT
Length = 0016 ’ '
@CODE TEXT _TEXT
@CODESIZE TEAT 0
@QCpPU e TEXT 0101lh
PDATASTZE . . L', TEXT 0
@FILENAME TEXT PGML3 1
@VERSION TEXT 510
21 Source Lines
25 Total Lines ’
21 Symbols -
47930 + 4220033 Bytes symbol space free
. R L
. 0 Warning-Errors .’
N 0 Severe .Errors .; ,

.LST File Options

Three assembler directives govern how macro expansions appear in the

LST file. These directives pertain to the macros that follow them in the program,

1. After SALL (suppress all), the assembly code in-a facro expan-
‘ snon is not listed. You might want to use this option for large
* " 'macros, or if thcre ‘are a lot of macro invocations.

2.

3.

, After XALL, only those source lines that generate code or data

are listed. For example, comment lines are not listed. This is the
default option.

After .LALL (list alt), all source lines are listed, except those
beginning wnlh a doublc semicolon ;).

EAN

262 13.2 Local Labels

These directives do not affect the machine code generated in the macrc
invocations, only the way the macro expansion appear in the .LST file.

Example 13.3 Suppose the MOVW macro is rewritten as follows:

MOVW MACRO WORD1, WORD2
;moves source to destination
;iuses the stack

PUSH WORD2

POP WORD1

- ENDM

Show how the following macro invocations would appear in a .LST file

.XALL

MOVWW DS,CS
.LALL

MOVW P,Q
.SALL

MOVW AX, {SI)

" Solution:

.XALL
MOVW DS, CS
PUSH CS
POP DS
.LALL
MOVW P,Q
;moves source to destination
PUSH Q
POP P
.SALL
MOVW AX, (S1)

Finding Assembly Errors

If MASM finds an error during macro expansion, it indicates an error
at the point of the macro invocation; however, it's more likely that the
problem is within the macro itself. To find where the mistake really is, you
need to inspect the macro expansion in the .LST file. The :LST file is especially
helpful if you have a macro that invokes other macros (see discussion later).

13.2
Local Labels -

v

A ‘'macro with a loop or decision structure contains one or more

“labels. If such a macro is invoked more than once in a program, a duplicate

label appears, resulting In an assembly error. This problem can be avoided
by using local labels in the macro. To declare them, we use the LOCAL
pseudo-op, whose syntax is '

LOCAL list_of_ labels

Chapter 13 Macros 263

where list_of_tabels is a list of labels, separated by commas. Every time the
macro is expanded, MASM assigns different symbols to the labels in the list.

-The LOCAL directive must appear on the next line after the MACRO state-

ment; not even a comment can precede it.

‘Example 13.4 Write a macro to place the largest of two words in AX.

- Solution:

GET_BIG MACRO WORD1 , WORD2

"7 . LocAL EXIT

MOV AX, WORD1

cME AX, WORD2

JG EXIT

. MOV AX, WORD2

EXIT:.

ENDM

Now suppose that FIRST, SECOND, and THIRD are word variables. A macro
invocation of the form

GET_BIG FIRST, SECOND
expands as follows:

MOV AX,FIRST .

CMP AX, SECOND

JG 220000

MOV AX, SECOND-
?20000:

A later call of the form
GET_BIG SECOND, THIRD
expands to this code:

MOV AX, SECOND
'CMP AX, THIRD
JG 220001
. MOV 'AX, THIRD ~

220001:. - - :)

Subsequent invocations of this macro or to other macros with local labels causes
MASM to insert labels 220002, 2?0003, and so on into the program. These labels
are unique and not likely to conflict with ones the user would choose.

133

‘Macros that Invoke
_Other Macros

* A macro may invoke another macro. Suppose, for e\nmple we have
two macros that save and restore three registers:

) SAVE_REGS MACRO R1,R2,R3 RESTORE_REGS MACRO $1,8.,83

. Y PUSH Rl pPopP 51
PUSII R2 rop S
PUSH R3 : pop 63
ENDM ’ R\DM

These macros are invoked by the macro in the following example.

264 13.4 A Niucro Library

Example 13.5 Write a macro to copy a stnng Use the SAVE_REGS and
RESTORE_REGS macros.

Solution:
COPY MACRO SOURCE, DESTINATION, LENGTH
SAVE_REGS €X, SI,DI
LEA SI1, SOURCE
LEA DI,DESTINATION
CLD
MOV CX, LENGTH
REP MOVSB
RESTORE_REGS pT,SI,CX
ENDM

1f MASM encounters the macro invocation
corPY STRING1, STRING2, 15

it will copy the following code into the program:

PUSH CX

PUSH 81

PUSH DI

LEA SI, STRING1 -
LEA DI, STRING2
CLD

MOV CX, 15

REP MOVSB

POP DI

POP SI

POP CX

Note: A macro may invoke itself; such macros are called recursive macros.
They are not discussed in this book.

13.4
A Macro Library

The macros that a program invokes may be contained in a separate
file. This makes it possible to create a library file of useful macros. For ex-
ample, suppose the file’s name is MACROS, on a disk in drive A. When

- MASM encounters the pseudo-op

INCLUDE A:MACROS

in a program, it copies all the macro definitions from the file MACROS into
the program at the position of the INCLUDE statement (note: the INCLUDE
directive was discussed in section 9.5). The INCLUDE statement may appear
anywhere in the program, as long as it precedes the invocations of its macros.

The IF1 Conditional

) if a macro library is inclugied _111_ a program, all its mécro definitions
will appear in the .LST fil¢, cven if they’re not invoked in the program. To.
prevent this, we can insert the following:

Chapter 13 Macros. 265

IF1l
INCLUDE MACRCS
ENDIF
Here, IF1 and ENDIF are pseudo-ops. The IF1 directive causes the assembler
to access the MACROS file during the first assembly pass, when macros are
expanded, but not during the sccond pass, when the LST file is created.
" Note: Other conditional pseudo-ops are discused in section 13.6.

Examples of Useful Macros

The following are examples of macros that are useful 10 have in a
macro library file. ‘

.

Example 13.6 Write a macro to return to DOS.
Soliion:
. DOS_RTN 'MACRO
. MOV AH, 4CH
INT 21H -
ENDM .
The macro invocation is

" DOS_RTN

Example 13.7 Write a macro to execute a carriage return and line feed.

g .

Solution: -
NEW_LINE MACRO

MOV AH,2

MOV DL, ODH

INT 21H

MOV DL, OAH. -

INT 21H

ENDM -

" The macro invocation is * -

NEW_LINE ‘

The next example is one of the more interesting macros.

Example 13.8 * Write a macro to display a character string. The string is
the macro parameter.

Solution:
DISP_STRMACRO STRING
LOCAL START,MSG
;save registers
PUSH AX
PUSH DX
PUSH . DS .

.JMP .. - SBART

266 13.4 A Macro Library

MSG DB STRING, ' $/
START:

MOV AX,CS

MOV DS,AX ;set DS to cude seg-.e.t

MoV AH,9

LEA DX, MSG

INT 21H
;restore registers

poP . DS

poP [32.4

pop ~ AX

ENDM

Sample invocation:
DISP_STR ‘this is ~ string’

When this macro is invok xd, the string parameter replaces the dummy pa-
rameter STRING. Because ‘he string is being stored in the code segment, CS
must be moved to D5; this take, two instructions, because a direct move
between segment regisrers is foibidden.

Including = Macro Library

" The preceding macros have been placed in file MACROS on the stu-
dent disk. They are used in the following program, which displays a message,
goes to a new - _, and displays another message.

Progsam Listing PGM13_2.ASM
TITLE PGM13_2: MACRO DEMO
.MODEL SMALL

.STACK 100H

171

INCLUDE MACROS

ENDIF

.CODE

MAIN PROC
DISP_STR ‘this is the first line’
NEW_LINE
DISP_STR ‘and this is the second line’
DOS_RTN

MAIN ENDP
END MAIN

Sample execution: .

C>PGM13_2
this is the first line
and this is the second line

The macro expansions are shown in file PGM13_2.LST (Figure 13.2).
To save space, the machine code has been edited out.

Chapter 13 Macros

267

flqure 13.2 PGM?3_?.£S£ s

TITLE PGM13_2: MACRO DEMO
.MODEL | . SMALL
.STACK 100H
.CODE
MAIN PROC
DISP_STR ‘this is the first line’
1 PUSH AX
1 PUSH DX
1 PUSH DS
1 . JMp " 220000
1 220001 ' DB ‘this is the
first line’,’
. S’
1 220000:
1 MOV AX,CS
1 MOV DS,AX ;set DX to
code segment
1 MOV AH,9
1 LEA DX, 220001
1 INT 21H
1 POP DS
1 POP DX
1 POP AX
NEW_LINE
1 MOV AH,2
.1 MOV L. NDH
1 INT 21H
1 MOV DL, OAH
1 INT 214
DISP_STR ‘apd this is the second line *
1 PUSH AX
1 PUSH DX
-1 PUSH DS
1. - JMP 270002
1 220003 DB 'and this is the
second line ’,'Ss’
1 ??0002: . .
1 MOV AX,CS
1 MOV DS,AX :set DX to
code segment)
1 - MOV AH,9
1 LEA DX, 220003
1 INT - 21H
1 POP DS
1 .POP DX
1 POP AX
DOS_RTN ‘ :
1- MOV AH, 4CH
Lo 1 INT 21H
MAIN .. ENDP
END

" MAIN

~

268 13.5 Repetition Macros

13.5
Repetition Macros The REPT macro can be used to repeat a block of statements. Its
: syntax is
REPT expression
statements
ENDM

When the assembler encounters this imacro, the statements are repeated the
number of times given by the value of the expression. A REPT macro may
be invoked by placing it in the program at the point that the macro’s state-
ments are to be repeated. For example, to declare a word array A of five zeros
the following can appear in the data segment:

A LABEL WORD
REPT 5
DW 0
ENDM

Note: The LABEL pseudo-op was discussed in section 10.2.3. MASM
expands this as follows:

A oW 0
CW 0
Di 0
DW o]
DW 0

Of course, this example is trivial because we can just writc
A DW (0)

Another way to invoke a REPT macro is to place it an ordinary macro,
and invoke that macro.

Example 13.9 Write a macro to initialize a block of memory to the first
N integers. Then invoke it in a program to initialize an array to the first
100 integers.

Solution:

BLOCK MACRO N
K=1
REPT N
DW K
K=K+1
ENDM
ENDM

Note: In this macro, we used the = (cqual) pseudo-op. Like EQU, it
<an be used to give a name to a constant. The expression to the right of the
equals sign must evaiuate to a number. Unlike EQU, a constant defined with
an = may be redefined; for example, K = K + 1. Remember, all this takes place
at assembly time, rather than execution time.

To define a word arrdy A and initialize it to the first 100 integers,

- we can place the following Statements in the data segment:

" Chapter 13 Macros 269

A. LABEL' WORD
BLOCK 100

Invocation of the BLOCK macro initializes K to 1 and the statements inside the
_.REPT are assembled 100 times. The first time, DW 1 is generated and K is
increased to 2; the second time, DW 2 is generated and K becomes 3, ... the
100th time, DW 100 is generated and K = 101. The final result is equivalent to

A DW 1
DW 2

¢
DW 100

Example 13.10 Write a'macro to initialize an n-word array to
1,2!, .. n! and show how to invoke it:

Solution:

FACTORIALS MACRO N
M=
FAC = 1
REPT . N
PW FAC
M =
FAC = M*FAC
ENDM
ENDM

To definc a word array B of the first eight factorials, the data secgment
““can contain -) .
B LABEL WORD
FACTORIALS 8
" Because 8! = 40320 is the largest factorial that will fit in a 16-bit
word, it doesn’t make sense to invoke this macro for larger values of N. The
expansion is

B “tpW 1
DW 2.
DW 6
DW 24
DW 120 ~
oW 720 °
oW 5040
DW - 40320

The IRP Macro
v " "Anothcr rcpctit'ion macro is IRP (indefinite repeat). It has the form
. P > |

IRP, d, .<al,a2,..an> .
statements

ENDM

Note: The angle brackets in the above definition are part of the syntax.

270 13.6 An Output Macro

When it is expanded, this macro causes the statements to be assembled n tlmaf
on the ith expansion, each occurrence of parameter d is replaced by al,

Example 13.11 Write macros to save and restore an arbitrary number
of registers.

Solutions:

SAVE_REGS MACRO REGS RESTORE_REGS MACRO REGS
IRP D, <REGS> IRP D, <REGS>
PUSH - D POP D
ENDM ENDM
ENDM . ENDM

To save AX,BX,CX,DX, we can write
SAVE_REGS <AX, BX,CX,DX>
It has the following expansion:

PUSH AX
PUSH BX .
PUSH CX
PUSH DX

To restore these registers, write,

RESTORE _REGS <DX,CX,BX,AX>

13.6
An Output Macro

To use the macro structures introduced so far, we write a macro
HEX_OUT that displays the contents of a word as four hex digits. The hex
output algorithm, discussed in Chapter 7, is the following:

Alﬁorithm for Hex Output (of BX)

1: FOR 4 times DO

2 Move BH to DL

3 shift DL 4 times to -the right

4 IF DL < 10

S: THEN

6 convert contents of DL to a character in ’'0’..'9’
7 ELSE

8: convert contents of DL to a character in ’A’..'F/
9: END_IF

10: output character

11: Rotate BX left 4 times

12: END_FOR™

The following listing contains the macro HEX_OUT and a program to test it.
HEX_OUT inyokes four other macros: (1) SAVE_REGISTERS and (2) RE-
STORE_REGISTERS from example 13.11; (3) CONVERT_TO_CHAR, which con-
verts the contents of a byte to a hex digit character (lines 4-9 in the algorithm);
and (4) DISP_CHAR, which displays a character (line 10 in the algorithm).

Chapter 13 Macros 271

Program Listing PGM13_3.ASM
0: TITLE PGM13_3: HEX OUTPUT MACRO DEMO

1: .MODEL SMALL

2: L

3: SAVE_REGS MACRO REGS

4: , IRP D, <REGS>

S: PUSHD

6: ENDM

7: ENDM

8:

9: RESTORE_REGS MACRO REGS

10: IRP D, <REGS>

11: POP D

12: ‘ ENDM

13: ENDM

14:

15: CONVERT_TO_CHAR MACRO BYT .
16: LOCAL ELSE_, EXIT

17: ;converts contents of BYT to a hex digit char
18: ;if

19: " CMP BYT,9 ;contents <= 92

20: JNLE LSE_ ;no, >= Ah

21: ;then ’
22 7 " OR BYT,30H ;convert to digit char
" 23 ' JMP EXIT

24: ELSE_:) '

25: ADD BYT,37H ;convert to digit char
26 - EXIT: .

273 ENDM

28 ’

29: DISP_CHAR MACRO BYT
30: :;displays contents of BYT

31: PUSH AX

32: MOV AH, 2

33: MOV DL, BYT

34: - - T INT: 21H
735: POP AX

36: : ENDM

37:

'38: HEX_OUT MACRO WRD
39: :;displays contents of WRD as 4 hex digits

40: SAVE_REGS <BX, CX, DX>
41: MOV BX,WRD
42: MOV CL, 4 ;shift and rotate count
43: REPT 4
44: MOV DL, BH
45:° SHR DL,CL ;shift right 4 times
46: - CONVERT_TO_CHAR DL ;convert DL to digit char
47: DISP_CHAR DL ;display D .
48:° : ROL BX,CL ;rotate left 4 times
49: ! ENDM ’
50: RESTORE_REGS _ <DX, CX, BX>
.51 ENDM
$2:

53: .STACK

272 13.7 Conditionals

54: .CODE B

55: ;program to test above macros

56: MAIN PROC

57: MOV AX, 1AF4h ;test data

58: HEX_OUT AX ;display in hex
59: ‘MoV AH, 4CH ;dos exit

60: INT 2iH

61: MAIN ENDP

62: END MAIN

Sample exccution:

To code the FOR loop in the hex output algorithm, HEX_OUT uses a REPT
... ENDM (lines 43-49). This was done mostly for illustrative purposes; it
makes the machine code of the expanded macro longer, but it has the ad-
vantage of freeing CL for use as a shift and rotate counter.

At line 46, macro CONVERT_TO_CHAR is invoked to transform the
contents of DL to a hex digit character. This macro has two local labels,
declared at line 16. At line 47, macro DISP_CHAR is invoked to display the

C>PGM13_3
1AF4
contents of DL.
13.7
Conditionals

Conditional pscudo-ops may be used to assemble certain state-
ments and exclude others. They may be used anywhere in an assembly lan-
guage program, but are most often used inside macros. The basic forms are

Conditional and . Conditional
statements . ’ statementsl
ENDIF ELSE
’ statements2
ENDIF

In the first form, if Conditional evaluates to true, the statements are assem-
bled; If not, nothing is assembled. In the second form, if Conditional is true,
then statcments] are assembled; if not, statements2 are assembled (ELSE and
ENDIF are pseudo-ops).
' Table 13.1 gives the forms of the most useful condiional pseudo-ops
and what'is required for them to be evaluated as true.
In section 13.4, we used the conditional If1 to include a macro

library in a program. The next examples show how some of the other con-
ditionals may be used.

Chapter 13 Macros = 273

Table 13.1 Cnndmonal Pseudo-Ops

Form - TRUE IF°

IF éxét' .Constant expression exp is nonzero.

IFE exp Exp is zero.

I8 <arg> Argument ‘arg is missing (blank). Angle brackets are

required.

IFNB <arg> Arg is not missing (not blank).

IFDEF sym Symbol sym is. defined in the program (or declared as
: ' EXTRN). B -
e _Note: The EXTRN directive is discussed in Chapter 14.

IFNDEF sym Sym is not defined or EXTRN.

IFIDN <str1>,<str2> Strings str1 and str2 are identical. Angle brackets are

* required. .

IFDIF <stri>,<str2> Strings str1 and str2 are not identical.

iF1 - Assembler is making the first assembly pass.

w2 . Assembler is making the second assembly pass.

A Macro that Uses IF

Example 13.12 - Write a macro to define a block of memory words with
N entries, consisting of the first K integers, followed by N - K zero words,

and use it to initialize an array of 10. words to values 1, 2, 3, 4, 5,0, 0, O,
0, and 0.

Solution:

BLOCK . MACRO N,K
1 =1

REPT N
IF K+1-I
pwW 1
I = 141
ELSE, - -
W, 0 .
'suoxr
hsunn
ENDM

If this macro is invoked to define an ;uuy A as follows,

A - LABEL
BLOCK 10,5

~ WORD
4.8 - :
thc expansion initiflizes N1o 10, K to 5, I1o 1, and assemble the statements
"inside Rl rr 10 tigies. After five pas.»&.s, DW 1...DW § are generated and K
= 6 After that, since K+ 1 - [=54+ 126 = 0 the statement followin;
VLSE—namely DW 0—is assembled. The result is equivalent to

A bw 1,2,5,4,5,0,0,0,0,0

274

13.7. Conditionals

- A Macro that Uses JFNB: : .

Recall from Chapter 11, exercise 9, that INT 21h, function OAH,
stores a string that the user types in the byte array whose offset address is
contained in DX. The first byte of the array must contain the maximum
number of characters expected. DOS fills in the next byte with the actual
number of characters read. ’

‘Example 13.13 Write a macro READ MACRO BUELEN that ejther uses

INT 21h, function OAb, to read a string Into the byte array BUF of length
LEN (if both arguments are present), or uses INT 21h, function 1, to read
a single character into AL (if both arguments are missing).

Solution:

READ MACRO BUF, MAXCHARS _

; BUF = STRING BUFFER ADDRESS

; LEN = MAX NO. OF CHARS TO READ
TFNB <BUF>

IFNB <LEN>
MOV AH, OAH ;read string FCN,
LEA DX, BUF ;DX has string ADDR
MOV BUF, LEN ;1st byte has array size
INT° 21H - ;read string

ENDIF

ELSE o
MoV AH,1° ;read char FCN
INT 21R sread char

ENDIF '

ENDM

If the preceding macro is invoked by the statement
READ MSG, 10
then since both arguments are present, the code

MOV All, OAH
LEA LX, MSG
MOV 1SG, 10
INT 21H

is assembled. String MSG must be a declared array of at least 13 bytes (1 byte
for the maximuin number of characters expected, 1 byte for the actual num-

_ ber of characters read, 10 bytes for the characters, and 1 byte for a carriage

return). If the macro invocation is

READ

then since both arguments are blank, the code following ELSF, namely
MOV AH,1

INT 21h

is assembled. If this macro is improperly invoked with only one argument—
for example, READ MS5G—then no code is assembled. '

Chapter 13 Macras a3

The .ERR Directive

Because macros may be called in a variety of situations, it's possible
they may be Invoked incorrectly. The .ERR directive provides a way for the
assembiler to tell the user about this. If MASM encounters this directive, it
displays the message "forced error®, which indicates a fatal assembly error.

Example 13.14 Wme: 2 program containing a macro to display a charac-
ter. The mpcro should produce an assembly error if its parameter is omitted.

Solution:

Program Listing PGM13_4.ASM
TITLE PGM13_4: .ERR DEMO
.MODEL SMALL
.STACK 100H
DISP_CHAR MACRO CHAR
IFNB <CHAR>
MOV AH,2
MOV DL,CHAR
INT 21R . . R
ELSE
.ERR
ENDIF
ENDM
.CODE
MAIN PROC :
DISP_CHAR 'A’ . ilegal call
DISP_CHAR' iillegal call
MOV AH, 4CH -
. INT |, 21H
MAIN ENDP
END MAIN

© COMASM PGM13_4;

Microsoft (R) Maéro Assen.\bler Version 5.10, - .
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.'

PGM13_4.ASM(15): error A2089: Forced error
'50050 + 418683 Dytes symbol cpace free

0 wWarning Ergors
.1 Severe Errors

. . ., Fs R K PR
276 13.8" Macros and Proceaures

13.8 .

Macros and

Procedures

Macros and procedures are alike in the sense that both are written
to carry out tasks for a program, but n can sometimes be difficult for a

'programmer to decide which structure is best in a given situation. Here are

some considerations:

‘ -~Assembly Timie:

A program contammg macros usually takes longer to assemble than
a similar program containing procedures, because it takes time to cxpand
the macros. This is especially trug if library macros are involved.

Execution ‘Tune

The code generated by a macro expansion gencrally executes faster
than a procedure call, because the latter involves saving the return address,
transferring control to the procedure, passing data into the procedure, and
returning from the procedure.

Program Size -
A program with macros is generally larger than a similar program

with procedures, because each macro invocation causes a separate code block
to be copied into the program. However, a procedure is coded only oncc.

«

Other Considerations

Macros are especially suitable for small, frequently occurring tasks.
Liberal use of such macros can result in source code that resembles high-level
language. [However, big jobs are usually best handled by procedures, because
big macros generate large amount of code if they are called very often.

. .

e ~t e

Summary

* A macro is a named block of text. It may consist of instructions,
pseudo-ops, or references to other macros.

* A macro Is invoked at asc. n expand a macro, MASM
copies the macro text into une program at the position of the in-
vocation, just as if the user had typed It in. If the macro has a
dummy pafameter list, actual parameters replace the dummy
ones. MASM~ replaces any mstructions by machine language code.

F S A T A S

e ‘An important use of macros is xo create new mstrucnons

Macro expanswnsmay be viewéd in'a program s LST file. Three
assembler directives govern how the expansion will appear. After
SALL, the macr6 ‘expansion is not hsted _After .XALL, oniy those
lines that generate source code are listed. After .LALL, all source
lines_ are listed, except:commients that “are preceded by ;.

Local labels may be used within a macro-Each time the macro
is invoked, a diffcrent label is generated. This gets around the
problem of having duplicate labels resulting from several macro

invocations.

Chapter 13° Macros 277

"o ATmadio may mvoLc anothcl’ facro, or itsclf.

., A nbrary me of macros can ‘be created. Its macros may be used in
' a program if the lNCLUDE pseudo-op is used.

.. ’lhe REPT macro may be used to repeat a block of statements. It

- has a single argument that specifies the number of times to re-
_-* peat the statements. It can be placed in the program at the point
-7 the statemems are’to be repeated, or enclosed in another macro.
The REPT macro has no name field.

.

e The XRP,macro may-be used to repeat statements an arbltrary
- number of times.

-e By using .cSnditional pseudo-ops within macros, MASM can be
made to ‘assemble certain statements and exclude others.

* " The ERR directive provides a way to inform the user that a macro
is being incorrectly called.

* Macro and procedures each have advantages. Programs with mac-
~ .08 usually take ionger to assemble, and they generate more ma-
-~ chine c¢ode, but execute faster. Small tasks are often best handled
" by macros, and’ procedures are better for large tasks.

" Glossary
gonditional pscudo-ops . Pscudo-ops used to assemble certain state-
ments and exclude others
expand (a'macro) When MASM encounters a macro name
in a program, it replaces the macro name
i by its body
invoke (a macro)’ Use the macro name in a program
_local label A label defined with the LOCAL pseudo-

op inside a macro. Each time the macro
-is invoked, MASM generates a different
numerical label when the local label is

" encountered
et s d ey VAT et
."New Pseudo-Opsé 7+
. conditional macrc;s"' ENDI) LOCAL
. ELSE "_ e " LEKRR MACRO
“ENDIF <. PEoResE AL g REPT

JEET I

(*see Table 13.1) <~ 7%

718

. ﬁm

Exorcisas :
. Write the following mecros. All registers used by the macros

should be restored, except those that return results.

a. MUL_N MACRO N, which puts the signed 32-bit product of
AX and the number N in DX and AX.

b. DIV_N MACRO, N which divides the number in AX by the
number N and puts the signed 16-bit quonent in AX. You
may assume that N is not 0.

c. MOD MACRO M,N, which returns in AX the remainder after
M ls divided by N. Note that M and N may be 16-bit words,
registers, or constants. You may assume that N Is not 0.

d. POWER MACRO N, which takes the number in AX and raises
it to the power of N, where N is a positive number. The result ¥
should be stored in AX. If the result is too big to fit in 16
bits, the macro should set CF/OF.

Write a macro C_TO_F, which takes an argument C (which rcpre-
sents a centigrade temperature), and converts it to Fahrenhcit tem-
perature F according to the formula F = 94xC)+32. To do the -
multiplication by 9 and division by S, your macro should invoke
the MUL_N and DIV_N macros of exercises 1(a) and 1(b). The re-
sult, truncated to an integer, is returned in AX. If overflow occurs
on multiplication, CF/OF should be set. :
Write a macro CGD MACRO M,N that computes the greatest com-
mon divisor of arguments M and N. Euclid’s algorithm for com- *
puting the CGD of M and N is

WHILE N #» 0 DO
M= MMD N
Swap M and N
END_WHILE
RETURN M

Your macro should invoke the MOD macro of exercise 1(c)”

Mucros are cspecially useful in graphics applications. Write the fol-
lowing macros:

a. A macro MOV_CURSOR MACRO R;C that moves the cursor
to row R and column C. ‘

b. A macro DISP_CHAR MACRO CHAR,ATTR that displays char-
acter CHAR with attribute ATTR once at the cursor position.

¢. A macro CLEAR_WINDOW MACRO R1,C1,R2,C2,COLOR that
clears a window with upper left comer at (C1,R1), lower
right corner at (C2,R2), and attribute COLOR.

d. A macro DRAW_BOX MACRO RI,C1,R2,CC2 that draws a box
outline with upper left corner at (C1,R1), and lower right cor-
ner at (C2,R2). Use extended ASCII characters for the corners
and sides.

S..

Chapter-13: Macros 279

Use a REPT to write the folowing macros:

. a.. A macro ALT MACRO N, where N is a positive even integer,

that initializes a block of N memory bytes to alternating 0's

*.and 1's, beginning with 0. Show how the macro would be in-

- voked to initialize a 100-byte array BYT.

b. A'macro ARITH MACRO B,LN, where B, I, and N are posi-
tive integers, that initializes 2 block of memory words to
the following arithmetic progression: 8, B+ 1, B+ 2 x1I...
B + (N - 1) x1. Show how the macro would be invoked to
initialize a 100-word array WRD whose first two elements ¢
are 10 and 12.

c. A macro POWERS_OF_TWO MACRO N, where N is a nonneg-
ative integer, that may be used to initialize a block of N mem-
orywords to 1, 2, 4, 8, 16, ... 2V 1. Show how the macro is
invoked to initialize a 10-word array W.

d. A macro BIN MACRO N, K, where N and K are nonnegative
integers, that will move the binomial coefficient B(N, K) = N
Xx(N=-1)x..(N-K+1)into AX.

State what code, if any, would be assembled in the {ollowii @

MAC1 MACRO M
IF M-1
MOV AX,M
M=M-1
IFE M
MOV BX,M
ENDIF o ,
ENDIF
ENDM

a. For the macro invocation MAC1 1?
b. For the macro invocation MAC1 2?

State what code, if any, would be asscmbled in the following macro:

MAC2 MACRO M,K
REPT M
MOV AX,M
K=K+1
IF K-3
MOV BX, M
ENDIF
ENDM
ENDM

a. For the macro invocation MAC2 §,1?
b. For the macro invocation MAC2 2,2?

- 280

Exercises -

8. The Fibonacci sequenceis 1, 1, 2, 3, 5, 8, 13, 21, 34.... Write a

macro FIB MACRQ N whose invocation will cause the instruction
MOV AX,FN to be assembled, where FN js the Nth Fibonacci numr
ber. For example, the call FIB 8 would cause the instruction MOV
AX,21 to be assembled.

Here is an iterative algorithm for producing the Nth Fibonacci
number:

IF N = 1
THEN FN = 1
ELSE
LO = 0
HI = 1 .
REPEAT N-1 TIMES
X = LO
LO = HI
HI = X + LO
FN = HI

14

Memory Management

Overview

segments

Until now, all our programs have consisted of a code segment, a

~stack segment, and perhaps a data segment. If there were other procedurcs

besides the main procedure, they were placed in the code segment after the
main procedure In this chapter you wxll see that programs can be con-

structed in other ways.

* In section 14.1, we discuss the .COM program format in which code,
data” and stack fit into a* single’ segment. .COM programs have a simple

" structure and don’t take up as much disk space as .EXE programs, so system

programs are often written in this format.

Section 14.2 shows how procedures can be placed in different mod-
ules, assembled scparately, and linked into a single program. In this way they
can be written and tested separately. The modules containing these proce-

" dures may have their own code and data segments; when the modules are

lmkcd the code segments can be combined, as can the data segments.
‘Section 14.3 covers the full segment definitions. They provide com-
plete control over the ordermg, combination, and placement of program

‘Section 14.4 provides more information about the simplified segment
defmitxons that we have been using throughout the book. -

The procedures we've written so far have generally passed data values
through registers. Section 14.5 shows other ways for procedures to communicate.

14.1
.COM Programs

In this section we discuss a program format in which the code, data,
and stack segments coincide. This type of program is also known as a .COM
program, because that is the extension given the run file. As you will see,
the primary advantages of .COM programs are their simple structure and the

281

282

14.1

.COM Programs

fact that they take up relatively little disk space. The disadvantages are in-
flexibility and limited size, because everything—code, data, and stack—must
fit into the single segment.

A problem with .COM programs is where to place the data, if any,
because they are in the same scgment as the code. They can be put at the
end of the program, but this requires use of the full segment declarations
{section 14.3). We choose to place the data at the beglnnlng ol’ the program.
Here is the form of a .COM progrim: -

.COM Program Format

o] TITLE

1 .MODEL SMALL

2 .CODE

3 ORG 100H

4: START:

5 JMP MAIN

6 ;data goes here

7 MAIN PROC

8: ;instructions go here
9: ;dos exit

10: MOV AH, 4CH

11: INT 21H

12: MAIN ENDP

13: ;other procedures go here
14: END START

Let’s look at the differences between this format and the format
we've becn using up till now (.EXE program format). First, there is only one
segment, defined by .CODE. Because the first statement must be an instruc-
tion, the procedure begins with a JMP around the ‘data. The label START
indicates the entry point to the program; this label is also the operand of
the END in line 14. The reason for the ORG 100h directive is explained as
follows.

The ORG Directive

In Chapter 4 we mentioned that when an .EXE program is loaded
in memory, it is preceded by a 100h-byte information area called the progran
segment prefix (PSP). The same is true for .COM programs, and for them, the
PSP occupies the first 100h bytes of the segment.

The ORG 100h directive assigns 100h to the location counter, which
keeps track of the relative location of the statement currently being assen-
bled. Ordinarily, the location counter is set to 0 at the beginning of a scg-
ment. ORG 100h makes it start at 100h instcad.

Now suppose a4 .COM program has some data. Without the ORG
100h, the assembler would assign addresses to variables relative to the be-
ginning of the segment; this would incorrectly place them in the PSP With
the ORG 100h, variables are correctly assigned addresses relative to the be-
ginning of the program, which starts 100h bytes after the beginning of the
segment.

.COM Program Stack

~ In a .COM program, the stack is in the same segmeht as the code
and data. Unlike an .EXE program, the programmer does not have to define
a stack area. When the program is loaded, SP is-initialized to FFFEh, the Jast

Chapter 14 Memor) Management 283

Figure 14.1 A .COM Program
in Memory

Oftset

FFFEh

" Program segment prefix

JMP START j¢————— P

Data

START:

word in the seginent. Because the stack grows toward the beginning of mem-
ory, there is little danger that the stack will interfere with the code, unless
the stack gets very large or there is a lot of code. Figure 14.1 shows how a
.COM program looks after it has been loaded in memory, it defined with the
preceding format.

An Example of a .COM Program
As an cxample, let’s rewrite'PGMLZ.ASM in .COM format. the pro-

gram just displays HELLO! on the screen. o aid in the comparison,
PGM4_2.ASM is reproduced here and renumbered PGM14_1.ASM.

Program Listing PGM14_1.ASM (a repeat of PGM4_2.A5M)
TiTLE PGM14_1: HELLO

+MODEL
STACK
.DATA

MSG DB

.CODE
AIN

SMALL
10UH

HELLO!S’

PROC

¢inicialice D5

MOV AX, @DATA

;display message

MoV DS, AX ;initialize DS

LEA DX, MSG jget message

MOV AH, 9 ;displa string function
INT 21h ;display wessage

sreturn to DUS

MAIN

MOV AH, 43CH
INT 21n
ENDP

END MAIN

Now here is the program written in .COM fotmat.

284

14.1

.COM Programs

Program Listing PGM14_2.ASM
TITLE‘P5M14;2:.COM DEMO
.MODEL SMALL

.CODE =
ORG 100H
START:.
JMP MAIN
e CUHELLOS!
MAIN PROC
LEA DX, M3G ;get message
MOV AR, 9 ;display string function
INT 2IH ;display ‘HELLO’
MOV AH, 4CH ;dos exit

T 22H

il
“AIN ENDP
END START

Note that because there is only one segment, the instructions

MCV AX, GDATA
MCV DS, AX
. . which are required for an .EXE program that has data, are not needed in a

.COM program.
The assemble and link steps are the same as before:

. h>C:MASM PGM14_2;

Microsolt (R) Macro Assembler Vercsion 5,10
Zopvright (U) Micresoft Corp 1981, 1988. All rights reserved.

LG v 418713 Bytee symbol space tree

3 viarning Errocrs

S Severe Errcrs

A>CILINK PGM14_2;

Linker Version 3.64
¢ Corp 1983-1988. All rights reserved.
no stack segmen:t

This warning may be ignored since a .COM program doesn’t have a scparate
stack segment.

For a .COM program, the .EXE file that is produced by the LINK
program is not the run file. It must be converted to .COM file format by
running the DOS utility program EXE2BIN.

Chapter 14 Memory Managément 285

A)C:BX!‘ZBI-N! PGM14 2 -PGM14 2.COM

‘The first-argument to EXE2BIN is PGM14_2. The default extension is .EXE.
The second argument PGM14_2.COM is the output file name. The .EXL file
that was created in the preceding steps is no longer needed and should be
‘erased before.running the program. To execute it. we type

A>PGM14_2
- HELLO!
‘.‘A>.q M
s mentioned before, a pnmary advantage of .COM programs is their small
ize. The size of PGM14_.1.EXE is 801 bytes vs. 22 bytes for PGM14_2.COM.
he main reason [0r the size discrepancy is that an .EXE file has a 512-byte
cader block, which contains information about the size of the executable
ode, where it is to be located in memory, and other data. Another reason
i that an .EXE program contains a separate stack segment
14.2
Program Modules For large programs with many procedures, it is convenient to put

‘procedures in separate filgs. There are two primary reasons for doing this:

‘1. The procedures can be ¢oded, assémbled, and tested separately,
_ possibly by different programmers.
.- 2.. When proccdures are assembled separately, they can-use the same
names for vanables and/or statement labels. This is because the as-
! ‘sembler allows a name to be local to a file and it will not conflict
with the same name in a different file.

_.Assembly and Object Modules

A scpatately-assembled prbccduré must be contained in an assem-
bly module. This is an .ASM file consisting of at least one segment defini-
tion. .The assembler takes an assembly module and produces an .OBj file
called an obiect modulc The Imker then combines object modules into
an .EXE flle that can be executed

NEAR and FAR Procedures

. In section 8.3, we noted,that the syntax of procedure declaration is

286

14.2 Program Modules

where type is NEAR or FAR (the default is NEAR). A procedure is NEAR if the
statement that calls it is In the samne segment as the procedure itself; a pro-
cedure is FAR if it is called from a different segment. -

Because a FAR procedure is in a different segment from its calling
statement, the CALL instruction causes first CS and then IP to be saved on
the stack, then CS:IP gets the segment:offset of the procedure. To return, REY
pops the stack twice to réstore the original CS:IP.

You’ll see in a moment that a procedure can be NEAR, even if it's
assembled scparately. A procedure must be typed as FAR if it’s impossible for
the calling statement and the procedure to fit into a single memory segment,
or if the procedure will be called from a high-level language.

EXTRN

When assembling a module, the assembler must be informed of
names which are used in the module but are defined in other modules;
otherwise these names will be flagged as undeclared. This is done by the
EXTRN pscudo-op, whose syntax is

EXTRN external name_list

'Here, external_name_list is a list of arguments of the form name:type where

name js an external name, and type is one of the following: NEAR, FAR,
WORD, BYTE, or DWORD. For extemally declared procedures, type would
be NEAR or FAR. The types WORD, BYTE, and DWORD are used for variables.

For example, to inform MASM of the existence of a NEAR procedure
PROC1 and a FAR procedure PROC2 that are defined in separate modules,
we would say,

EXTRN PROC1:NEAR, PROC2:FAR
Now suppose MASM encounters the statement
CALL PROC1

MASM knows from the EXTRN list that PROC1 is in another assembly mod-
ule, and allocates an undefined address to PROC1. The address Is filled in

when the modules are linked.
The EXTRN pseudo-op may appear anywherc in the program, as long
as It preccdes the first reference to any of the names in the external name

list. We will place it at the beginning of the program.

PUBLIC

A procedure or vanable must be declared with the PUBLIC pseudo-
op if it is to be used in a different module. The syntax is

PUBLIC name_list

where name_list is a list of procedure and variable names that may be referred
to in a different module. The PUBLIC pscudo-op can appear anywhere in a
module but we will usually place it near the beginning of the module.

Linking Object Modules

The LINK program combines object modules into a single executable
machine language program. It tries to match names that are declared in
EXTRN directives with PUBLIC declarations in the other modules. 1t com-
bines code and data segments in different modules according to the segment
declarations of these segments (see section 14.3). With the relative positions

Chapter 14 Memioly Management _ 287

of instructions and data known, it is able to fill in the addresses left undefined
by MASM. .

- As an example, we will rewrite PGM4'3'ASM which displays a
prompt, reads a lowercase letter, and convetis it to upper case.

- -There are two asscmbly modules. The first module contains the main
procedure it displays a message, lets the user enter the lowercase letter, and
calls a procedure CONVERT, which converts the letter to uppercase and dis-
plays it with another message. CONVERT is defined in another module.

Program Listing 14_3.ASM: First Module
0: TITLE PGM14_3: CASE CONVERSION
EXTRN _CONVERT:NEAR

‘-..

2: .MODEL . .SMALL .
3: L.STACK 1008

4: .DATA . o~ A

ig MSG4 “DB "ENTER A LOWERCASE LETTER:$’

6: .COPE

7: MAIN .PROC ..

8:° MOV, AX, @DATA . —

9; MOV DS,AX .initialize ds

10: MOV . AH,9 . :display string fcn
11:) LEA DX, MSG ;get MSG

12: -, ~ INT 21H. ;display it

13: MOV, AH,1 -, iread char fecn : .
14: INT 21H . iipput char ‘
15: CALL CONVERT ;convert to uppercase
16: MOV AH, 4CH ’

17: INT 21H ;DOS exit

18: MAIN ENDP

19: END MAIN

‘The first module consists of stack, data, and code segments. After
initializing DS at lines 8 and 9, the program prints the message “ENTER A
LOWERCASE LETTER:” and calls procedure CONVERT. The existence of
CONVERT as a procedu.¢ in another module is made known to the assembler
by the EXTRN directive in line 1. The first module ends with an END directive
in line 19, with the entry point MAIN to the program. -

Program Listing 14_3A.ASM: Second Module
0: TITLE PGM14_3A: CONVERT

1: PUBLIC CONVERT

2: .MODFEL SMAIL

3: .DATA

4: MSG - DB - ODH,0AH,’IN UPPERCASE IT IS ' -
5: « CHAR DB - =-20H,’'S’

6: .CODE)

7: CONVERT PROC NEAR

8: ;converts char in AL to uppercase

9: PUSH BX

10: PUSH DX -

11: ADD CHAR, AL iconvert to uppercase
12: MOV AR, S ;sdisplay string fcn
13: LEA DX, MSG ;get MSG

288

14.2 Program Modules

14: INT 21H .2display it

i5: , POP DX :)
16: rop BX

17: 7 RET

18: CONVERT ENDP

19: "END

The module containing CONVERT has its own data and code segments.
When the modules are linked, the code segments from the two modules are
combined into a single code segment: similarly, the data segments are combined
into a single segment (you'll sec tHe reason for this in section 14.3).

At line 1, CONVERT is declared PUBLIC, enabling it to be called,
from the first module. At line 7, procedure' CONVERT Is declared as type
NEAR because the code segments of the two modules are combined. Because
the data segments are also combined, it’s not necessary to initialize DS in :
the second module; this was done in the first module. The module ends with
an END directive; unlike the first module, the END has no operand. -

After saving the registers used; CONVERT begins at line 11 by adding
the lowercase letter in AL to the -20h stored in byte variable CHAR. This
converts the letter to upper case (assuming a lowercase letter was entered).
At lines 12-14, the procedure outputs the final message. Note that the name
MSG is used in both modules.

Now let’s assemble and link the modules. MASM and LINK will be
in drive C, and the source files in drive A. A is the logged drive.

Microsoft (R)
Copyright (C)

A>C:MASM PGM14_3;

Macro Assembler Version 5.10
Microsoft Corp 1981, 1988. All rights reserved.

49984 + 390317 Byteés symbol space free

0 warning Errors
0 Severe Errors

Microsoft (R)
Copyright (C)

A>C:MASM PGM14_3A;

Macro Assembler Version 5.10
Microsoft Corp 1981, 1988. All rights reserved.

49976 + 390325 Bytes symbol -space free -

0 Warning Errors
0 Severe Errors

Chapté(14 Memo'ry' Management 291

C>LIB MYLIB,

Microsoft (R) Library Manager Version 3.10
Cecpyright (C) Microsoft Corp 1983-1988. Ail rights reservid.

Operations:
List file:MYLIB

When LIB asks for a list fllc, we reply MYLIB. This creates a listing tile MYLIL,
which looks like this:

C>Type MYLIB
CONVERT........... pgml4_3a

cymld _3a Oftrset: 00000010H Code and data size: 29H

CONVERT

The listing shows the object module names and the procedures they contain.
In this case, the only object module in the library is PGM14_3A.08B), and it

contains only procedure CONVERT.
For more information about the LIB utility, consult the Mncrosoft

.) Codewew and Utilities manual. .

14.3 . o

Full Segment . . . The simplified segment definitions that we have been using up till
Definitions now are adequate for most purposes. In this section we consider the full

" segment definitions. The pritnary reasons for using them are as follows:

1. Full scgment definitions must be used for versions of MASM ear-
lier than version §.0.

2. With the full segment definitions, the progranuner can control
how segments arc ordered, combined with cach other, and
aligned relative to each other in memory.

. 1 T
.The Segment Directive
7 7 The full form of the segment dircctive is
nirme SEQREINT align combine ‘class’

. The operands alig:., combine, and class are optional types, and a.c discussed
in the next sectnon To end a segment, we say

name ENDS

292

14.3 FuB Segment Definitions

For example, we could define a data segment called D_SEG as follows:

D_SEG SEGMENT
. sdata goes hexe
D_SEG ENDS

Now let’s look at the segment operands._ |

Align Type -

The align type of a segment declaration determines how the starting
address of the segment is selected when the program is loaded in memory.
Table 14.1 gives the options.

The significance of a segment’s align type may be illustrated by the
following example. Let SEG1 and SEG2 be segments declared like this:

SET1 SEGHMENT PARA
e 11H DUP (1)

SEGL ENDS

S262 SEGMENT PARA
o2 _10H DUP (2)

SEG2 ENDS)

Suppose these segments are loaded sequentially, with SEG1 being
axnsigned segment number 1010h. The 11h bytes of SEG1 will extend from
1010:0000h to 1010:0010h. Now, because SEG2 has a PARA align type, it
begins at the next available paragraph boundary, which is at 1012:0000 =
1010:0020. Here is-a DEBUG display of memory:

©1010:C500
- 101C:6C10
11210:6020

01 01 01 91 01 0Ol 0'1 01-01 01 01 01 01 01 01 01
01 00 (v 00 6O 00 00 00-00 00 00 00 00 00 00 00
02 32 C¢2 02 G2 02 02 G2-02 02 02 02 02 02 Oz 02

W see there is a gap of Fh = 15 bytes (represented by 00 byu.s) from the
end of SEG1 to the start of SEG2. This gap represents wasted space, becausc
it is not part of the data in cither segment.

Table 14, 1 Alngn Types

PARA] Segmen(begins at the next available paragraph (least
sigmificant hex digit of physical address 1s 0).
BYTE Segment begins at the next available byte. _
WORD Segment begins at the next available word (least significant bit
. . -of physical address is O).
PAGE- Segment begins at the next available page (two least

significant hex digits of physical address are 0).

PARA is lhe default align type.

SEGl1- . . . SEGMENT - .

Chapter 14 Memary Management 293

Now suppose the segments arc declared as follows:

PARA
LB ~ 11E DUP (1),
'SEG1 ENDS
"SFG2 SEGMENT . BYTE
DB " o108 puP ()77
SEG2 : ENDS .

where SEG2 is given a BYTE align type. If these segments are {oaded sequen-
tially, mhemory will look like this:

10310:0000 Gl

01 0@ C1 01 01 Ol

01-01 01 01 01 01 Gl 01 01

101€:0010 €1 02 02 02 02 02 02 (2-02°02 02 02 02 02 02 02
10310:0620 .02 00,00 00 OC 00 00- 00-00 00.00700 00 00 00 0C

The segments have been.combined into a single memory >¢.§,mc.m
with no wasted space. - - -

.Combine Type ‘

If a program contains segments of the same_name, the combine type
tells how they are to be combined when the program is loaded in memory.
Table 14.2 gives the most frequently used choices.

The assembler indicates an error if a stack scgment does not have a
STACK combine type. For other segments, if the combine type is omitted
the program segment is loaded into its cwn memory segment.

A frequent use of the PUBLIC combine iype is to combine code seg-

" ments w:th the same name ‘from different modules into a single code seg-

ment. This “mcans that”all prmcduru ‘can be typed as NEAR,-Similarly,
PUBLIC data sc;,mcnts can be combined”into u single data scgment. The
advama&e is that DS needs only to be initialized once, and does not need
to be modified m acccss any of the Jata. ’l h]s is what happened in PGM14_3

when dam se;,mcnls were Lombmc .
" Data segments in ditférent anodules can be given the same mame

- and a COMMON combine type so that variables in one module can share

Table 14.2 Combine Types

PUBLIC Segments with the sdme namw: are concatenated (Placed one
FI IS after-the other) 1o form a's-.gle, centinuous memory block

COMIMON - - Segmiénts with the same rame begin at the same place n
memory: that is, are overlaid
STACK Has the same «.fect as PUBLIC, except that all offset addresses

of instructions and data,in the segment are relative to the SS
register SP 1s initialized to"the end of ‘the segment
Indicates that the segment should begin at the specified

AT paragraph
paragraph.

"94 14.3 Full Segment Definitions

the same memory locations as variables in the other module. To show how
COMMON works, suppose we declare

D_SEG SEGMENT COMMON

A DB 11H DUP (1)
D_SEG ENDS

in FIRST.ASM, and

D_SEG SEGMENT COMMON

B DB 10 DUP (2)
D_SEG ENDS

in SECOND.ASM. If the modules are assembled and linked as follows:
C>LINK FIRST + SECOND;

then they will be overlaid it memory and variables A and B will be assigned
the same address. The size of the common data segment will be that of the
larger segment (11h bytes). However, the values of the bytes will be those
that appear in SECOND, because it is the last module mentioned on the
LINK command line. Memory wiil look like this:

S roand 0 a2 02 02 62 02 02 02-G2 02 02 02 02 02 02 O
LGTEIHuLe uwl W0 0¢ 00 00 00 00 0O-00 GO 00 00 00 OC 0D GO

Class Type

The class type of a segment declaration determines the order in
which segments are Joaded in memnory. Class type declarations must be en-
closed in single quotes. ‘

If two or more segments have the samc class, they are loaded in
memory one after the other. If classes are not specified in segment declara-
tions, segments are loaded in the order they appear in the source listing.

For example, supposc we declare

C_SEG SEGMENT fCObE’
;main procedure goes here

C_SEG ENDS

in module FIRST.ASM, and

Ci_SEG SEGMENT ‘' CODE’
;another procedure yoces here
Cl_SEG ENDS

- in module SECOND.ASM and these are the only segments ol Class ‘CODE"
When the modules are assembiled and linked by

i
' " C>LINK FIRST + SECOND

Chapter 14 * Memory Management 295

then C1_SEG will follow C_SEG in.memory. However, there may be a

-gap between the segments; to eliminate it, C1_SEG could be given a BYTE

" align type.

14.3.1
Form of an .EXE
Program with Fuli
Segment Definitions

*D_SEG ENDS

The form of an .EXE program with the full segment definitions is a

~ little different from the way it s with snmplmed segment definitions. Here

is the standurd format

"'S_SEG ! SEGMENT STACK

DB 7. J1IC0H puP (?)
S_SEG ENDS
D_SEG ~ SEGMENT -
;data goes here

C_SEG SEGMENT ° :
ASSUME CS:C_SEG, SS:S_SEG, DS:D_SEG

MAIN PROC

;initialize DS

*Y . - MOV - AX,D_SEG

" MOV ‘DS, AX
;other Lnotructzons

;dos exit’ B
MOV -~ ‘AR, 4CH
' INT -21H
MAIN ENDP pi
;other procedures.can go here

"C_SEG. ENDS ..

END MAIN.

T_hé segment names in this form are arbitrary. The ASSUME directive is un-
familiar, so we need to explain its role here.

The ASSUME Directive
N When a program is assembled, MASM needs to be told which seg-

'ments are the code, data, and stack; the purpose of the ASSUME directive

is to associate the CS, S, DS, and possibly ES registers with the appropriate
segment With the simplified segment directives, the segment registers are
automatically associated with the correct segments, so no ASSUMLE is needed.

“However, for programs with data we still need to move the data segment

number into DS at run.time because, as we noted in Chapter 4, DS initially
contains the segment number of the PSP..

14.3.2
Using the Full Segment
Definitions

>

‘To show how the full Segment definitions work, we’il use them to
rewrite PGM14_3.ASM and PGM14_3A.ASM. We will do this two ways: in
the first vcrsnon, we’ll use the default opemnds of the scgment dircctives.

’ Program Llstmg 14 4. ASM Furst Module

0: TITLE PGM14,4: CASE "CONVERSION
1 sx'rm . \.ONVERT EAR = .

2: s s;G SEGMENT STACK .

3: “pB 100 Dup (0) .

296{ 14.3 Full Segment Definitons

4: S_SEG ENDS
5: D_SEG SEGMENT

6: MsG DB “ENTER A LOWERCASE LETTER:S$’
7: D_SEG ENDS

8: C_SEG SEGMENT

: ASSUME CS:C_SEG, DS:D_SEG, SS:S_SEG

10: MAIN PROC

11: MOV AX,D_SEG

12: MOV DS, AX ;initialize DS

13: MOV AH, 9 ;display string fcn
14: LEA DX, MSG ;get MSG

15: INT 21H ;display it

16: MoV AH, 1 ;read char fen

17: INT 21H ;input char

18: CALL CONVERT ;convert to uppercase
19: MOV AH, 4CH

20: INT AlH ;dos exit

21: MAIN ENDP

22: C_SEG ENDS

23: END MAIN

Program Listing 14_4A.ASM: Second Module
24: TITLE PGM14_4A: CONVERT

25: PUBLIC CONVERT

26: D_SEG SEGMENT

27: MSG DB ODH, OAH, ’ IN UPPERCASE IT IS '
28: CHAR DB -20H, 'S’ °

29: D_SEG ENDS

30: C_SEG SEGMENT

31: ASSUME CS:C_SEG,DS:D_SEG
32: CONVERT PROC FAR

33: ;converts char in AL to uppercase

34: PUSH DS ;save DS

35: PUSH DX ;and DX

36: MoV DX, D_SEG ;jreset DS

37: : MOV DS, DX ;to local data segment
38: ADD CHAR, AL ;convert to uppercase
39: MOV AH, 9 ;display string fcn
10: LEA DX, MSG ;get MSG

41: INT 21H ;display it

42: . POP DX ;restore DX

43: pOP Ds ;and DS

44: RET)

45: CONVERT ENDP
46: C_SEG ENDS
47: END

Note the following:

1. We chose the same name C_SEG for the code segments in both
modules, but because they don’t have combine type PUBLIC,
they will occupy separate memory segments when the moduies
are assembled and linked. This means procedure CONVERT must
be typed as FAR (lines 1, 32).

Chapter 14 Memory Management 297

2. Because the data segments are also not PUBLIC, they occupy sepa-
" tate memory segments. This means procedure CONVERT nceds to
"change DS in order to access the data in the second module (lines
36, 37). We use DX (instead of AX) to move the segment number
into DS, because CONVERT receives its input in AL.

After assembling and linking the modules, iet’s look at the .MAP file

(Figure 14.3). The segments appear in the order they appear in the source
listings. Because-the segments were defined with the default (PARA) align

type, there are gaps between them.
Now let’s rewrite the preceding modules to take full advantage of

the SEGMENT directives. Here are the requirements:
" 1. The code segments from the two programs are combined into a
single segment, as are the data segments.
2. Gaps between segments are eliminated.
3. The order of the segments in the final program is: stack, data, code.

Program Listing 14_5.ASM: First Module
TITLE PGMi4_S: CASE CONVERSION

1 : EXTRN CONVERT :NEAR
2: S_SEG SEGMENT STACK
3: DB 100 DUP (0)
4: S_SEG ENDS ,
S: D_SEG SEGMENT BYTE PUBLIC 'DATA’ .
6: MSG DB fENTER A LOWERCRSEZ LETTER:S’
7: D_SEG . ENDS i g
8: CISEG SEGMENT BYTE PUBLIC ’CODE’
9: " ASSUME CS:C_SEG, DS:D_SEG, $5:S_SEG
10: MAIN PROC
11: . MOV AX,D_SEG .
12: | MCV DS, AX. ;initialize DS
13: MoV AH,9 . idisplay string fcn
14: ¢ LEA DX, MSG ;ygct MSG
15: | _INT 21H . i+display it
Jd6: .. MOV _AH,1 | ;read char fcn
A7: . . INT | 21H ;input char
18: . . CALL C_ONVERT ’ ;jconvert to uppercase
'1'9_:] MOV AH, 4CH
20:. - INT 218 ; idos exit
21: MAIN ENDP
22: C_SEG' ENDS |
23: END MAIN
Figure 14.3 PGM14_4.MAP Start Stop Length Name Class

00000H 00063H 00064H ° S_SEG
00070H (0008AH 0001BH - D_SEG . B
00090H ~ " 000ASH - D001AH ~ C_SEG
000BOH:" 000C7H 00018H D_SEG
O00DOH - 0CESH 00016H * C_SEG

Program entry point at 0009:0000 - .,

298 14.3 Full Segment Definitions

Program Listing 14_5A.ASM: Second Module

0: TITLE PGM14_5A: CONVERT

1: PUBLIC CONVERT

2: D_SEG SEGMENT BYTE PUBLIC 'DATA’

3: MSG DB ODH, OAH,’IN UPPERCASE IT 1IZ '
4: CHAR DB -20H,’$’

5: D_SEG ENDS . ~

6: C_SEG ~ SEGMENT BYTE PUBLIC ’‘CODE’

T ASSUME CS:C_SEG,DS:D;SEG

8: CONVERT PROC NEAR

9: ;converts char in AL to uppercase

10: PUSH DX

11: ADD CHAR, AL ;convert to uppercase
12: MCV AH, 9 ;display string fcn
13: LEA DX, MSG1 ;get MSG1

14: INT 21H ;display it

I5: POP DX

16: RET

17: CONVERT ENDP

i8: C SEG ENDS
i9: END

As before, we assemble and link the modules. Figure 14.4 shows the
.MAP file. It shows tha: the data and code segments of the two modules
have been combined into single segments with no gaps between them. Here's
how the SEGMENT operands were used:

1. By using the same names for code and data segments in the two
modules, and using a PUBLIC combine type, we formed a pro-
gram consisting of only three segments. Also, gaps were elimi-
nated by using a BYTE align type. Because the PUBLIC combine
type causes scgments with the same name to be concatenated,
the use of class types ‘CODE’ and ‘DATA’ is actually redundant.

2. Because the data for both modules now form a single segment, it
wasn't necessary to reset DS in procedure CONVERT, and CON-
VERT doesn’t need to save and restore DS. This is the primary rca-
son for combining data segments.

3. Because there is now only one ¢ode segment, we can give CON-
VERT a NEAR attribute.

Figure 14.4 PGM14_5MAP Start Stop Length Name . Class
00000H 00N63H 00064H S_SEG .
00064H 00096H 00033H D_SEG DATA
00097H " 0008DH 00027H C_SEG . CODE

Program entry point at 0009:0007

Chapter 14 Memory Management 299

14.4

More About the
Simplified Segment

Definitions

Now that we have seen the full segment definitions, we can say more
about the featurcs of the simplified segment directives that we have been
using throughout the book.

First, as we saw in section 4.7.1, a memory model must be specified
when the simplified segment definitions are used. The choice of memory model

depcnds on how many code and data scgmcntﬁ there are. The syntax is

«MODEL - memory._| model

where memory_model is one of the choiles listed in Table 14.3.Unless there
is a'lot of code Or data, the .SMALL model is adequate for most assembly
lang,uage programs.

o Second, for the SMALL model, Table 14.4 gives the simplified segtnents,

" their-default fiames and align, combine, and class types. In addition to the

.CODE, .DATA, and .STACK segments we have beo using, uninitialized data
can be declared in a separate .DATA? segimcent, and data that won't be changed
by the program may be placed in a .CONST segment. For example,

.MODEL SMALL
LSTACK 10011
.DATA .
X . DW ' 5
' .DATA? -
Y’ DW
.CONST _
© MSG DE " THELLDSY

Table 14.3 Memory Models

Model . Destription
SMALL © . Code in one segment
Data in one segment
MEDIUM Code in more than cne segment

. Data in one segment

" COMPACT Code in one segment

Data in more than one segment

* LARGE .- Cade in more than one segment

Data in more than one segment
No array larger than 64 KB

i HJGE_ ' _ . Code in more than one segment

Data in more than one segment
Arfays may be larger than 64 KB

Table 14.4 SMALL Model Segments

Default
Segment -~ - Name Align Combine Class
_CODE © '_TEXT ' - WORD -~ PUBLIC ‘COCE
DATA _DATA WORD PUBLIC ‘DATA'
DATA? _85S WORD PUBLIC ‘BSS’
STACK STACK PARA STACK "STACK'

.CONST CONST WORD "~ PUBLIC ‘CONST

300 14.5 Passing Data Between Procedures

.CODE

MAIN PROC
MAIN ENDP
END MAIN

Here the usual initializing statements

MOV AX,Q@DATA
MOV DS, AX

allow the program access-to the .DATA, .DATA?, and .CONST segments. This
is because LINK actually combines these program segments into a single

memory segment.
Third, for the SMALL model, when .CODE is used to define code

. segments in separately assembled modules, these segments have the same

default name (_TEXT) and a PUBLIC comibine type. Thus when the modules
are linked, the code segments combine into a single code segment; likewise,
segments defined with .DATA combine into a single data segment. We saw
a demonstration of this in PGM14_3.

§

14.5
Passing Data
Between Procedures

In section 8.3, we briefly discussed the problem of passing data be-
tween procedures. Because assembly language procedures do not have asso-
ciated parameter lists, as do high-level language procedures, it is up to the
programmer to devise strategies for passing data between them. $o far, we
have been passing data to procedures through registers.)

14.5.1
Global Variables

We have used the EXTRN and PUBLIC directives to show how a
procedure defined in one module can be called from another We can also
use these directives to have variables defined in one module and referred to .
in another. Followirig high-level language practice, these variables are called
global variables. An advantage of using giobal variables is that procedures
need not use additional instructions to move data between themselves.

As an example, the following program prints a user prompt, reads
two decimal digits whose sum is less than 10, and prints them and their sum
on the next line. This problem was exercise 4.7.

Program Listing 14_6.ASM: First Module

0: TITLE PGM14_6: ADD DIGITS
1 EXTRN ADDNOS: N.AR

2: PURLIC DIGIT!, DIGITZ2, SU-

3: . MODEJ_. SMALL

$: .STACK ~100H

S: .DATA

O MSG DB ENTEF TW. [.G1I7°S:5’
7: MSG1 DB OT,H,(‘RH."I_‘P-_ sUM OF
g: DIGITl DB :

9: DB ' AND

10: DIGIT2 DB z

11: DE ' 1S

Chapter 14 Memory Management

12: SUM DB ‘-30H,'S’

13: .CODE

14: MAIN PROC

15: ;initialize DS

16: MOV AX,@DATA .. o

17: MOV DS, AX . iinitialize DS

18: ;prompt user

19% MOV AH,9 ;display. string fcn

20: LEA DX, MSG ;get prompt

21: INT 21H ;display it

22: ;read two digits

23: MOV AH, 1 ;input char fcn

24: INT 210~ ;char.in AL

25: Mov DIGIT1,AL ;store in DIGIT1

26: INT 21H ;char .in AL.

27: MOV. DIGI®2,AL, ;store in DIGIT2
..28: "Jadd the dlglts) -
T 29; ... CALL ADDNOS ;add nos
?30;,.dxsplay results ’

31: LEA. DX, MSGl

32: MOV -AH, 9

33: INT,, 21H joutput result

34: MOV . AH, 4CH

35: INT 21H ;dos exit

36:, MAIN ENDP U

<37:~° * CEND ' MAIN

301

The digits and their sum are contained in variables DIGIT1, DIGITZ,
"and SUM, declared in the first module. In line 2, they are declared PUBLIC

so that external procedure ADDNOS can have access to them.

Program Listing 14_6A.ASM: Second Module

0: TITLE PGM14_6A: ADDNOS
1: EXTRN DIGIT1:BYTE, DIGITZ:BYTE, SUM:BYTE
2: PUBLIC ADDNOS o
3: .MODEL SMALL
4: .CODE ’
S: ADDNOS PROC NEAR
6 ;adds two digits *
7: :input: byte variables DIGIT1, DIGIT2 in PGM14_4
8: output: byte ‘variable SUM in PGM14_4
‘9 -PUSH ~ AX
10: MOV *AL,DIGIT1
T 11: aDD AL,DIGIT2
12: ‘- ADD SUM, AL
~13: POP i 234
14: . RET”
15: ADDNOS * "ENDP
*16: *END

DIGIT1, DIGIT2, and SUM appear in the second module’s EXTRN list, line
1. The procedure adds them (actually, it adds the ASCII codes of the digit
scharacters), then adds the sum to the -30h that has been stored in variable
SUM. This puts the ASCII code of the sum in SUM.

-

302 14.5 Passing Data Between Procedures

Sample execution:

C>PGM14_5

Fuore Two ~Ta11S:26

THUF I'M OF 2 aND 6 IS 8

14.5.2
Passing the Addresses
of the Data

A second method for passing data to a procedure is to send the
address of the data. This method is known as call by reference; it is par- -
ticularly useful when dealing with arrays. Call by reference is different from
call by value in which the actual data values are passed to the called pro-
cedure. Both methods can be used in the same procedure; for example, the
sclectsort procedure discussed in section 10.3 receives the address of the array |
to be sorted in Sl (call by reference), and the number of elements in the airay
in BX (call by value).

Here is the program to add two digits using call by reference.

Program Listing 14_7.ASM: First Module

o TITLE PGM14_7: ADD DIGITS

1: EXTRN - ADDNOS: NEAR

2: .MODEL SMALL

3: .STACK 100H

4: .DATA

5: MSG DB "ENTER TWO DIGITS:S’

62 MSG1 DB' omq,'omx,"mm SUM or

7: DIGITI DB 2

8: DB ' AND

8: DIGIT2 DB ?

10: DB ¢ I8 ¢

11: SUM DB -30H,’$’

12: .CODE

13: MAIN PROC

14: ;initialize DS

15: MOV AX,@DATA

16: MOV DS, AX ;initialize DS

17: ;display prompt .

i8: MOV AH, 9 ;display string function
19: LEA DX, MSG ;get prompt

20: INT 21H ;display it

21: ;read two digits

22: MOV AH,1 ;input char function
23 INT 21H ;char in AL

24 MOV DIGIT?,AL ;/store in DIGIT1

25 INT 214 ;char in AL

26 MOV DIGITZ2,AL ;store :n DIGITZ2

27: :;add them

28 LEA SI,DIGITL ;SI has offset of DIGIT1

N
o

LEA DI,DIGIT2 ;DI has offset of DIGIT2

. Chapter. 14 Memory Management 303

130+ LEA BX,5UM ;BX has offset of SUM
31: CALL ADDNCS ;add nos
32: ;display results
33: MOV hH, 3 ;display string fcn
34¢ A LEA 'X, MSG1 ;DX has messane
35: INT Z1H ;output result
36: ;dos'exit
37: " . MOV AH,4CH
38: INT 21H
3'9: MAI‘N ENDP .
- 40: END MAIN

At lines 28-30, the addresses. of the DIGIT1, DIGIT2, and SUM are passed to
procedure ADDNOS in pointer regxsters S! DI, and BX.

Program Listing 14_7A.ASM: Second Module
O: TITLE PGM14_7A: ADDNOS

1: -~ PUBLIC ADDNOS- - .

2 .MODEL $MALL

3 .CODE

4: ADDNOS ° PROC . NEAR

5: ;adds two digits

6: ;input: SI = address of DIGIT1

9

8

; DI = offset of DIGIT2
H ; BX = offset.of SUM
9:, ;output: [BX] = sum’
10:. 77 'PUSH AX _
11 . " ' Mov AL, (sI) [’ ;AL has DIGIT1
12: . ADD AL, [DI} ";AL has DIGIT1 + DIGIT2
13: ADD [BX),AL ;jadd to SUM
14: . poOP AX i .
15: _ ' RET
16: ADDNOS ENDP
17: END

In lines 11 and 12, ADDNOS uses indirect addressing to place the sum of
digits in AL. In line 13, indirect addresslng is used to .dd the sum to the
-30h in variable SUM. °

14.5.3 .
Using the Stack

Instead of using registers, a procedure can place data values and
addresses on the stack before calling another procedure. The called procedure
then uses BP and indirect addressing to access the data (recall from section

+10.2.1 that if BP is used in register indirect mode, SS has the operand’s seg-

* ment. number). This method is used by high-leve! languages to pass data to

« assembly language procedures; we use it in Chapter 17 to implement recur-
sive procedures (procedures that call themselves).

S Because the CALL instruction causes the return address to be placed
-on top of the stack, the called procedure begins by saving BP on the stack,

308 14.5 Passing Data Between Procedures

then it moves SP to BP; this makes BP point to the top of the stack. The
resulting stack looks like this: : -

SP— | (original BP) -~ BP
retum address

Now BP may be used with indirect addressing to access the data (we

) use BP because SP can’t be used in indirect addressing). To return to the
calllng procedure, BP is popped off the stack and a RET N is executed, where
N is the number of data bytes that the calling procedure pushed onto the
stack. This restores CS:IP and removes N more bytes from the stack, leaving
it in its original condition.

Here is the program to add two digits using this method:

Program Listing 14_8.ASM: First Module
TITLE PGM14_8: ADD DIGITS

0:
1:
2:
3:
4:

@ 3 W

11:
12:
13:
14:
15:°
16:
17:
.18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:..
32:

EXTRN ADDNOS: NEAR
.MODEL SMALL ’
.STACK 100K
.DATA ; ;
MSG DB *ENTER TWO DIGITS:S'
MSG1 DB ODH,OAH,’THE SUM OF '
DIGIT1 DB ?
DB ‘ AND '
DIGIT2 DB ?
DB r 18’
5UM 0B -30H, 'S’
.CODE
MAIN PROC
sinitialize DS
MOV AX, @DATA
MoV DS, AX ;initialize DS
;display prompt
MOV AH, 9 ;display string function
LEA DX, MSG ;get prompt
INT 21H ;display it
;read two digits
MOV AH, 1 ;input char function
INT 21H ;char in AL
MOV DIGIT1, AL ;store in DIGITI1
PUSH AX ;save on stack
INT 21H ;char in AL
MOV DIGIT2,AL ;store in DIGIT2
PUSH AX ,:8ave on stack

‘;add the digits

- CALL. ADDNOS.
ADD SUM,AL
;display results

;AX has sum
;store sum

Chapter 14 Memory Management 305

33: MOV AH,9 /r ;display string fen
34: LEA DX, MSG1 +JX has message
'35: - - - L INT T 21H . joutput result
. 36: ~;dos exit . " .

37:. .. MOV AH, 4CH

.38: < INT ' 21H- - &

39: MAIN _ ENDP -

40: ‘" END . MAIN

At lines 2%4-28, the two digits are read, stored, and pushed onto the stack
(because PUSH requires a word operand, we have to push AX). At line 30,
.ADDNOS is called to add the digits; it returns with the sum in AL, and this
is added to the -30h in SUM.

Program Listing 14_8A.ASM: Second Module

0: TITLE PGM14_8A: ADDNOS

1: "PUBLIC ADDNOS

2:t - .MODEL . SMALL

3:.' .CODE "

4: ADDNOS _ PROC NEAR

S: -",adds two dxgits

6 ; 'stack on encry ret. addr (top), digit2, digitl
4

¢ joutput: AX = sum
8: .. PUSH BP . . ;save BP
9: MOV BP, SP ;BP pts to stack top
10: MOV .AX, {BP+6] _;AL has DIGIT1
11: " ADD ' AX, [BP+4] ;AL has SUM
12:. -POP - BP ;restore BP
13, RET 4 . : ;restore stack, exit
14: ADDNOS‘ ENDP . .
15:° " END .

At line 9, the stack looks like this:

ve

SP —= | (original value of 8P) | —— BP
! return address

DIGIT2 (low byte)

DIGIT1 (low byte)

Stack _

N

DIGIT1 and DIGIT2 are in the low bytes of the words on the stack.
- After adding them, BP is popped and the procedure executes a RET 4, which
. removcs the two data words from the stack.

306

Summary

Summary

In a2 .COM format program, stack, data, and code all fit into a sin-
gle segment. A .COM program takes up much less disk space than
a comparable .EXE program, but the fact that code, data, and
stack must all fit into a single segment limits its versatility.

There are two kinds of procedures, NEAR and FAR. A NEAR proce-
dure is in the same code segment as the calling procedure, and a
FAR procedure is in a different segment. When a FAR procedure is
called, both CS and IP are saved on the stack.

The EXTRN pseudo-op is used to inform the assembler of the exis-
tence of procedures and variables that are defined in another as-
sembly module.

A procedure must be contained in an assembly module, which

consists of at least one segment definition. MASM translates an as-
sembly module into a machine language object (.OBJ) module.

The PUBLIC pseudo-op is used to inform the assembler that cer-
tain names a module may be referred to in another module.

The LINK program combines object modules into an executable
machine language program. It matches EXTRN declarations in ob-
ject modules with PUBLIC declarations in other object modules.

The LIB program can be used to create and maintain a file of ob-
ject modules.

The SEGMENT directive may have align, combine, and class types.

The align type determines how the segment’s starting address will
be selected when the program is loaded in memory.

The combine type determines how segments of the same name
are to be combined in memory.

If two or more segments have the same class, they are loaded
sequentially in memory.

Procedures in different modules can communicate through global
variables. Other methods are call by value or call by reference;
the calling procedure can implement these methods by placing
data values and addresses in registers, or pushing them onto the
stack.

Glossary
asscmbly module - An .ASM file consisting of at least one seg-
) merit definition
call by reference Communication with a procedure by pass-
ing it the addresses of variables contain-
ing the data the procedure needs
call by value Communication with a procedure by pass-

ing the procedure the actual data values
it nceds

Chapter 14 Memory Management 307 -

.COM program A program in which the code, data, and

stack segments coincide

v - .
-global variable A variable that is declared as PUBLIC, so

it can be accessed by statements in other
program modules

object module The .OBJ file that MASM creates by asser- -

bling an assembly module

New Pseudo-Ops

ASSUME ' AT EXTRN PUBLIC
.CONST_ ORG SEGMENT
.DATA? - :
Exercises

¢

1...Suppose a program contains the lines

CALL PROCl

MOV AX,BX

and (a) instruction MOV AX,BX is stored at 08/D:0200h, (b)
PROC1 js a FAR procedure that begins at 1000:0200h, and (c) SP
=010Ah.s -« ., v

What are the contents of CS, IP, and SP fust after CALL PROCI is .
“executed? What word is on top of the stack?

2! Suppose SP ='00FAh, CS = 1000h, top of stack = 0200h, next

* word on the stack = 08FDh. What are the contents of CS, [P and

SP after the following happens:

a. After RET is executed, where REY appears in a NLAR proccdure.
b. After RET is executed, where RET appears in a FAR procedure.
c. Afler RET 4 is executed, where RET appears in @ NEAR procedurc.

Programming Exercises

3. Consider a program that docs the following:

¢ The main procedure MAIN displays the message “INSIDL
MAIN PROGRAM", calls procedure PROC]1, and exits to DOS.

e PROCI displays the message “INSIDE PROC1” on a new ling,
calls procedure PROC2, and returns to MAIN.

* PROC2 displays the message “INSIDE PROC2” on a new line

and returns to PROC1.

Write this program in the following ways;

a. As a .COM program.)

b. As an .EXE program in which PROCI1 and PROC2 are NEAR
procedures contained in scparately assembled modules. Fach
procedure’s module contains the message that the procedus:
displays.

308

Programming Exercises

¢. As an .EXE program: in which the PROC1 and PROC2 are FAR
procedures contained in separately assembly modules. Lach
procedure’s module contains the message that the procedure
displays.

d. As an .EXE program in which the three messages are con-
tained in MAIN’s module and declared PUBLIC there. The
other procedures are NEAR procedures contained in separately
assembled modules. These procedures refer to the appropriate
messages via an EXTRN directive.

e. As an .LXE program in which the three messages are con-
tained in ' MAIN’s module. PROC1 and PROC2 are separatcly
assembled NEAR procedures. Before calling PROC1, MAIN
places the addresses of the messages “INSIDE PROC1” and
“INSIDE PROC2"” in St and DI, respectively.

f. As an .EXE program in which the three messages are con-
tained in MAIN’s module. PROC1 and PROC2 are separately
assembled NEAR procedures. Before calling PROC1, MAIN
pushes the addresses of the messages “INSIDE PROC2” and
“INSIDE PROC1” onto the stack.

The position of a substring within a string is the number of bytes

from the beginning of the string to the start of the substring.

Write a separately assembled NEAR procedure FIND_SUBST that re-
ceives the offset addresses of the first string in SI and the second
string in DI and determines whether the second string is a substr-
ing of the tirst; if so, FIND_SUBST returns its position in AX. If
the second string is not a substring of the first string, the proce-
dure returns a negative number in AX.

Write a program to test FIND_SUBST: the testing program reads

the strings, calls FIND_SUBST, and displays the result. This prob-
lem is a variation of PGM11_5.ASM.

BIOS and DOS

interrupts

Overview

In previous chapters, we used the INT (interrupt) instruction to call
system routines. In this chapter, we discuss different kinds of interrupts and
take a closer look-atithe operation-of the INT instruction. In sections 15.2

.and 15.3, we discuss the services provided by various BIOS (basic input/out-

put systems)'and _DOS interrupt routines.

To demonstrate the use of interrupts, we wilt write a program that
dlsplays the current tlme on the screen. There are three versions: the first
version simply displays the time and then terminates, the second version
shows the time updated every second, and the third version is a memory
resxdent program that can be called up when other programs are running.

15.1
Interrupt Service

Hardware Interrupt

. The nouon of m(errupt originally was conceived to allow hardware
devices to interrupt the ‘operation’of the CPU. For example, whenever a key
is pressed, the B086 nust be notified to read a key code into the keyboard
l)uﬂér. The general bardware interrupt goes like this: (1) a hardware that

~needs service sends an interrupt request signal to the processor; (2) the

8086 suspends the current task it is exccuting and transfers, control (o an
mtcrrupt routing; (3) the interrupt routine services the hardware d@vnct
by perforning some /O operation; and (4) control is transferred back to the
original exccuting task at the point where it was suspended.

309

310 15.1 Interrupt Service

Some questions to be answered are how does the 8086 find out a
device is signaling? How does it know which interrupt routine to execute?
How does it resume the previous task?

Because an interrupt signal may come at any time, the 8086 checks
tor the signal after executing cach instruction. On detecting the interrupt
signal, the 8086 acknowledges it by sending an interrupt acknowledge
signal. The interrupting device responds by sending an eight-bit number
on the data bus, called an interrupt number. Each device uses a different
interrupt number to identify its own service routine. The process of senging
control signals back and forth is called hand-shaking; it is needed to iden-
tify the interrupt device. We say that a type N interrupt occurs when'a device
uses an interrupt number N to interrupt the 8086.

The transfer to an interrupt routine is similar to a procedure call.
Before transferring control to the interrupt routine, the 8086 first saves the
address of the next instruction on the stack; this is the return address. The
8086 also saves the FLAGS register on the stack; this ensures that the status
of the suspended task will be restored. It is the responsibility of the interrupt
routine to restore any registers it uses.

Before we talk about how the 8086 uses the interrupt number to
locate the interrupt routine, let’s look at the other kinds of interrupts.

Software Interrupt

Software interrupts are used by programs to request system services.
A software interrupt occurs when a program calls an interrupt routine
using the INT instruction. The format of the INT instruction is
INT interrupt-number

The 8086 treats this interrupt number in the same way as the inlerrupt
number gencrated by a hardware device. We have already given a number
of examples of doing 1/0 with INT 21h.

Processor Exception
There is a third kind of interrupt, called a processor exception. A

. processor exception occurs when a condition arises inside the processor, such

as divide overflow, that requires special handling. Each condition corre-
sponds to a unique interfupt type. For example, divide overflow is type 0,
so when overflow occurs in a divide instruction the 8086 automatically ex-
ecutes interrupt O to handle the overflow condition.

Next we take on the address calculation for interrupt routines.

15.1.1
Interrupt Vector

The interrupt numbers for the 8086 processor are unsigned byte val-
ues. Thus, it is possible to specify a total of 256 types of interrupts. Not every
interrupt number has a corresponding interrupt routine. The computer man-
ufacturer provides some hardware device service routines in ROM; these are

. the BIOS interrupt routines. The high-level system interrupt routines, like

INT 21h, are part of DOS and are loaded into memory when the machine
is started. Some additional interrupt nuimnbers are reserved by IBM for future

- use; the remaining numbers are available for the user. See Table 15.1.

The 8086 does not generate the interrupt routine’s address directly from
the interrupt number. Doing so would mean that a particular interrupt routine
must be placed in exactly the same location in every computer—an impossible

Chapter 15 BIOS and DOS Interrupts 311

Table 15.1 Interrupt Types

Interrupt Types O-1Fh: - BIOS Interrupts
Interrupt Types 20h=3Fh: , - DOS Interrupts
I".terrupt Typés 40h-7Fh;. . - . reserved
Interrupt Types 80h—FOh el ROM BASIC
Interrupt Types F1h—FFh S " ~ not used

N B T . .
task, given the number of computer models and updated versions of the

routines. Instead, the 8086 uses the interrupt number to calculate the address
of‘a membory-location that contains the actual address of the interrupt rou-
tine. This means that the routine may appear anywhere, so long as its address,
called an interrupt vector, is stored in a predefined memory location.

All interrupt vectors are ‘placed in an interrupt vector table,

. which occupies the first 1 KB of memory. Each interrupt vector is given as

segment:offset and occupies four bytes; the first four bytes of memory con-
tam mterrupt vector 0. See Figure 15.1.

_To find the vector for an interrupt routine, we simply multiply the
mtcrrupt numbcr by 4. This gives the memory location containing the offset
of the routine; thé segment address of the routine is in the next word. For

\ example take interrupt 9, the keyboard interrupt routine: the offset address

is stored in locauon 9 x 4 = 36 = 00024h, and the segment address is found

_in location 24h + 2 = 00026h "BIOS Initializes its interrupt vectors when the

.computer is turned on, and the DOS interrupt vectors are initialized- when
‘DOS is loaded. *

Flgure_15 1 Interrupt Vector
‘ Table o :

Add.rgss ~ Mermory wor.ds
[R
Al b et
MRS N .
003FE 'Segnlwent of INT FF
: OOZ;FC + Offset'of INT FF
ey s fes
‘, ; : . : , : .
00006 Segment of INT 1 ‘
00004 | - OffsetofNT1 . |-
00002 5 S_eg.!nen_t of'lf{]' 0
00000 . "szfset of INTO

312 15.2 .BIOS Interrupts

15.1.2

Interrupt Routines Let's see how the 8086 executes an INT instruction. First, it saves
the flags by pushing the contents of the FLAGS register onto the stack. Then
it clears the control flags IF (interrupt flag) and TF (trap flag); the rcason for
this action is explained later. Next it saves the current address by pushing
CS and IP on the stack. Finally, it uses the interrupt number to get the
interrupt vector from memory and transfers control to the interrupt routine
by loading CS:IP with the interrupt vector. The 8086 transfers to a hardware
interrupt routine or processor exception routine in a similar fashion.

On completion, an interrupt routine executes an IRET (interrupt

return) instruction that restores the IP, CS, and FLAGS registers.

The Control Flags IF and TF

The control flags IF and TF play an important role in the interrupt

process. When TF is set, the 8086 generates a processor exception, interrupt

. type 1. This interrupt is used by DEBUG in executing the T (trace) command.
To trace an instruction, DEBUG first sets the TF, and then transfers control
to the instruction to be traced. After the instruction is executed, the processor
generates an interrupt type 1 because TF is set. DEBUG uses its own interrupt
1 routine to gain control of the processor.

_The IF is used to control hardware interrupts. When IF is set, hard-
ware devices may interrupt the 8086. External interrupts may be disabled
(masked out) by clearing IF. Actually, there is a hardware interrupt, called
NMI (nonmaskable interrupt) that cannot be masked out.

Both TF and {F are cleared by the processor before transferring to an

interrupt routine so that the routine will not be interrupted. Of course, an

-interrupt routine can change the flags to enable interrupts to occur during
its execution.

15.2

BIOS Interrupts As indicated in Table 15.1, interrupt types O to 1Fh are known as
BIOS interrupts. This is because most of these service routines are BIOS rou-
tines residing in the ROM segment FOOOh.

Interrupt Types 0-7

_ Interrupt types 0-7 are reserved by Intel, with types 0-4 being pre-
defined. IBM uses type S for print screen. Types 6 and 7 are not used.

Interrupt 0—Divide Overflow A type 0 interrupt is generated when a DIV
or IDIV opcration produces an overflow. The interrupt O routine displays the
message “DIVIDE OVERFLOW” and returns control to DOS. .

Interrupt 1—Single Step As discussed in the last section, a type 1 interrupt
is generated when the TF is set.

Interrupt 2—Nonmaskable Interrupt Interrupt 2 is the hardware interrupt
that cannot be masked out by clearing the IF. The IBM PC uses this interrupt
to signal memory and 1/O parity errors that indicate bad chips.

" Chapter 15 BIOS and DOS interrupts 313

Interrupt 3—Breakpoint -The INT 3 instruction is the only single-byte in-
. terrupt .instruction (opcode CCh); other interrupt instructions are two-byte
. instructions. It is possible to insert an INT 3 instruction anywhete in a pro-
-gram by replacing an existing opcode. The DEBUG program uses this feature
to set up breakpaints for the G (go) command.

interrupt 4—overflow A type 4 intérrupt is generated by the instruction
“INTO (interrupt if overflow) when OF is set. Programmers may write their .
own interrupt routine to handle unexpected overflows.

Interrupt 5—Print Screen The BIOS interrupt 5 routine sends the video
screen information to the printer. An INT § instruction is gencrated by the
keyboard interrupt routine (interrupt type 9) when the PrtSc (print screen)
key is pressed.

Interrupt Types 8h—Fh

" The 8086 has only one terminal for hardware interrupt signals. To
allow more devices to interrupt the 8086, IBM uses an interrupt controller,
the Intel 8259 chip, which can interface up to eight devices. Interrupt types
8-Fh are generated by hardware devices connected to the 8259. The original
version of the PC uses only interrupts 8, 9, and Ch.

Interrupt 8—Timer The IBM PC contains a timer circuit that generates an
interrupt once every 54.92 milliseconds (about 18.2 times per second). The
BLOS interrupt 8 routine services the timer circuit. It uses the timer signals
(ticks) to keep track of the time of day. '

Interrupt 9—Keyboard This interrupt (9) is generated by the keyboard cach
time a key is pressed or released. The BIOS interrupt 9 routine reads a scan
code and stores-it in-the keyboard buffer.

Interrupt E—Dlskerte Error The BIOS interrupt Eh routine handles disk-

“ette crrors. > - 't L Cea.

Adnterrupt Types 10h—1Fh

The interrupt routinies 10h—1Fh can be called by application . -
grams to perform various 1/O operations and status checking.

o,

Interrupt 10h—Video The BIOS intén:upt 10h routine is the video driver.
Details are covered in Chapters 12 and 16.

Interrupt 11h—Equipment Check The BIOS interrupt 11h routine returns
the equipment configuration of the particular PC. The return code is placed
in AX. Table 15.2 gives the interpretation of the bits returned in AX.

Interrupt 12h—Memory Size The BIOS interrupt 12h routine returns in AX
the amount of conventional memory a computer has. Conventional
‘memory refers to memory circuits v ith addresses below 640 K. The unit for
the return value is in kilobytes.

314

15.2 BIOS interrupts

Table 15.2 Equipment Check

15-14 number of printers installed
13 = 1 if internal modem installed
12 = 1 if game adapter installed
11-9 - number of RS-232 (serial) ports installed
8 ~ not used
7-6 number of floppy disk drives (if bit 0 = 1)
00 means 1
01 means 2
10 means 3
11 means 4
5-4 initial video mode
00 not us2d

01 means 40 x 25 color text
10 means 80 x 25 color text
11 means 80 x 25 monochrome
3-2 system board RAM size {for original PC) -
00 = means 16 KB
01 =-means 32 KB
10 = means 48 KB
11 = means 64 KB
1 if math coprocessor installed
1 if floppy disk drive installed

-
L}

o
n

Example 15.1 Suppose a computer has 512 KB conventional memnory.
What will be returned in AX if the instruction INT 12H is exccuted?

Solution: 512 = 200h, hence AX = 0200h.

Interrupt 13h—Disk I/0 The BIOS interrupt 13h routine is the disk driver,
it allows application programs to do disk 1/O.

Interrupt 14h—Communications The BIOS interrupt 14h routine is the
communications driver that interacts with the serial ports.

Interruﬁt 15h—Cassette This interrupt was used by the original PC for cas-
sette interface and by the PC AT and PS/2 models for various system services.

Interrupt 16h—Keyboard VO The BIOS interrupt 16h routine is the key-
board driver. Keyboard operations are found in Chapter 12.

Interrupt 17h—Printer VO The BIOS interrupt 17h routine is the printer
driver. The routine supports three functions: 0-2. Function 0 writes a char-
acter to the printer; input values are AH = 0, AL = character, DX = printer
number. Function 1 initializes a printer port; input values are AH = 1, DX

Chapter 15 BIOS and DOS Interrupts .. 315

Table 15.3 Printer Status

Bits in AH * Meamng

' =1 prmter not busy
= ‘l print acknowiedge -
= 1 out of paper

.. = 1 printer selected

=1/0 erré_r
not used
not used
=1 printer timed-out

O = N W LB N

pnnte' number. lunclxon 2 gets printer status, input values are AH = 2, DX
~ printer number. For all functions, the status is returned in AH. Table 15.3
shows the meaning of the bits returned in AH.

Example 15.2 Write instructions to print a 0.

>

Solution: W use function 0 to do the printing. Because printers con-
tain buffers for data, the 0 will not be printed until a carriage rclurn or
line feed character is sent. Thus,

“MOV AH, 0 ; functiosn 0, print’ char

MoV AL, ‘0 ;char &

MOV DX, 0 iprinter J

INT 17H .. ;RH contains return code
MOV AH, 0 ; function 0, print char
MOV AL, OAR Jline feed

INT 178

Interrupt 18h——8ASIC The BIOS interrupt 18h routine transfers control to
ROM BASIC.

Interrupt 19h—Bootstrap The BIOS interrupt 191'1 routine reboots the system.

Interrupt 1Ah—Time of Day The BIOS interrupt 1Ah routine allows a pro-
gram to-get and set the timer tick count, and in the case of PC AT and 1'$/2
models, it allows programs to get and set the time and date for the clock
circuit chip.

interrupt 1Bh—Ctrl-Break This interrupt is called by the INT 9 routine
‘when the Ctrl-bréak key is pressed. The BIOS interrupt 1Bh routine contiains
only an [RET-instruction. Users may write their own routine to handle the

Ctrl-break key.

316 15.3 DOS Interrupts

interrupt 1Ch—Timer Tick INT 1Ch is called by the INT 8 routine each timoP
the timer circuit interrupts. The BIOS interrupt 1Ch routine contains only
an IRET instruction. Users may write their own service routine to perform
timing operations. In section 15.5, we use it to update the displayed time.

Interrupts 1Dh—1Fh These interrupt vectors point to data instead of in-
structions. The interrupt 1Dh, 1Eh, and 1Fh vectors pointing to video ini-
tialization paraineters, diskette paraimeters, and video graphics characters,
respectively.

15.3

DOS Interrupts The interrupt types 20h-3Fh are serviced by DOS routines that pro-
vide high-level service to hardware as well as system resources such as files.
and directories. The most useful is INT 21h, which provides many functions
for doing keyboard, video, and file operations.

Interrupt 20h—Program Terminate Interrupt 20h can be used by a pro-
gram to return control to DOS. But because CS must be set to the program
segment prefix before using INT 20h, it is more convenient to exit a program
with INT 21h, function 4Ch.

Interrupt 21h—Function Request The number of functions varies with the
DOS version. DOS 1.x has functions 0-2Eh, DOS 2.x added new functions
2Fh-57h, and DOS 3.x added new functions 58h-SFh. These functions may
be classified as character I/O, file access, memory management, disk access,
networking, and miscellaneous. More information is found in Appendix C.

Interrupts 22h—26h Interrupt routines 22h-26h handle Ctrl-Break, critical
errors, and direct disk access.

\

Interrupt 27h—Terminate but Stay Resident Intcrrupt 27h allows pro-
grams to stay in memory after termination. We demonstrate this interrupt

in section 15.6.

15.4

A Time Display As an example of using interrupt routines, we now writce a program

Program that displays the current time. There are three versions, cach getting more

complex. In this section, we show the first version, which simply displays

the current time in hours, minutes, and scconds. In section 15.5, we write

the second version, which shows the time updated cvery second; and in

section 15.6 we write the third version, which is a memory resident program
that can display the time while other programs are running.

When the computer is powered up, the current time can be entered
by the user. or supplied by a real-time clock circuit that is battery powered.
This time value is kept 'in-memory and updated by a timer circuit using

. interrupt 8. A _program can call the DOS interrupt 21h, function 2Ch, t0

access the time.

Chapter 15 BIOS and DOS Interrupts ~ 317

le-i1h, Function 2Ch:
Time-of-Day .

Input: AH =2Ch
Output: CH = hours (0-23),
CL = minutes (0-59),
DH = seconds (0-59),
" DL = 1/100 seconds (0-99).

’ N . .

s

+ Our time display program has the following steps: (1) obtain the
current time, (2) convert the hours, minutes, and seconds into ASCH digits,
we ignore the fractions of a second, and (3) display the ASCII digits.

. The program is organized into a MAIN procedure in program listing
PGMlS 1.ASM and two procedures GET_TIME and CONVERT in program

_-listing PGM15_1A.ASM.

. A time buffer, TIME_BUF, is initialized with thc message of 00:00:00.
-The procedure MAIN first ‘calls GE1_TIME to store the current time in the
time buffer. Then it uses INT 21h, function 9, to print out the string in the
time buffer.

The procedurc GET TIME calls INT 21h function 2Ch to get the
time, then calls CONVLERT to convert the hours, minutes, and seconds into
ASCII characters. The first step in procedure CONVERT is to divide the input
number in AL by 10; this will put the ten’s digit value in AL and unit’s digit
value In AH (note that the input value is less than 60). The second step is
to convert the digits into ASCIL

Program Listing PGM15_1.ASM
TITLE PGMlS 1: TIME_DISPLAY_VER_1
.program chat displays the current tine

_ EXTRN GET_TIME:NEAR

.MODEL SMALL
.STACK 100H
.DATA ' ,
TIME_BUF DB ‘00:00:008’;time buffer hr:min:sec
.CODE
MAIN PROC

MOV . .AX, @DATA

Mov ~ Ds,Ax 7 ;initialize 58
;get and display time) 7

LEA BX,TIME_2UF ;BX poant® -wo TIME BUF

CALL GET_TIME ;put current time in TIME_BUF
LEA LY, TIME_BUYF ;UX pouints to TIME_BUF
T Mov: CAH,09H ;display time -
INT T 218
rfrrexitc
. ... MOV AH,4CH -;return -
© ., INT 21H sto DOS
. MAIN. ENDFP

i« END - MAIN

318 15.5 User Interrupt Procedures

Program Listing PGM1S_1A.ASM

TITLE PGM15_1A: GET AND CONVERT TIME TO ASCII

PUBLIC GET_TIME
.MCDEL SMALL
.CODE

GET_TIME PROC

;get time of day and store ASCII digits in time buffer

;input:
MoV AH, 2CH
INT 21H

MOV AL,CH
CALL CONVERT
MOV [BX], AX
;convert minutes into
MOV AL,CL
CALL CONVERT
MOV {BX+3],AX
;convert seconds into
MOV AL, DH
CALL CONVERT

MOV [BX+6],AX
RET
GET_TIME ENDP .,
: .
CONVERT PROC

;converts byte number
sinput: AL = number

;output :AX = ASCII digits,

MOV AH, 0
MOV DL, 10

DIV DL
OR AX, 3030H
RET
CONVERT ENDP
END

BX = address of time buffer

;gettime

;CH = hr, CL = min, DH = sec
;convert hours into ASCII and store

s hour
;convert to ASCII
;Store

ASCII and store
;minute
;convert to ASCII
;store

ASCII and store
;second

(0-59) into ASCII digits

;clear AH

;divide AaX by 10
;AH has remainder,
;convert to ASClI,
;AL has high digit

The program displays the time and terminates.

15.5
User Interrupt
Procedures

AL = high digit,AH = low digit

AL has quotient
AH has low digit

To make the time display program #hore interesting, let us write a
second version that displays the time and updates it every second.

One way to continuously update the time is to execute a Joop that
keeps obtaining the time via INT 21h, function 2Ch and displaying it. The

problem here is to find a way to terminate the program.

Instead of pursuing this approach, we will write a routine for inter-
rupt 1Ch. As mentioned earlier, this interrupt is generated by the INT 8
routine which is activated by a timer circuit about 18.2 times a second. When
our interrupt routine is called, it will get the timc ::.id display it.

Chapter 15 BIOS and DOS interrupts 319

Our program will have a MAIN procedure that sets up the interrupt
routine. and when a key is pressed, it will deactivate the interrupt routine
and terminate.

Set Interrupt Vector

To set up an interrupt i_outine, we need to (1) save the current in-
terrupt vector, (2) place the vector of the user procedure in the interrupt
vector table, and (3) restore the prcvnous vector before terminating the pro-

gfam.
We use the INT 21h, functlon 35h, to get the old vector and function

25h to set up the new interrupt vector.

INT 21h, Function 25h:
Set Interrupt Vector

;store interrupt vector into vector table
Input: - AH = 25h
*. AL = Interrupt number
DS:DX = interrupt vector
Output: none
. [l R

INT 21h, Function 35h:
Get Interrupt Vector

;obtain interrupt vector from vector table
Input: . . AH =35h :

. AL = Interrupt number
Output: ES:BX = interrupt vector

The procedure SETUP_INT in program listing PGM15_2A.ASM saves an old
interrupt vector and sets up a new vector. It gets the interrupt number in
AL, a buffer to save the old vector at DS:DI, and a buffer containing the new
interrupt vector at DS:SL. By reversing the two bulfers, SETUP_INT can also
be used to restore the old vector.

Program Listing PGM15_2A.ASM

TITLE PGM1S_2A: SET INTERRUPT VECTOR
PUBLIC SETUP_INT

v.MODEL'SMALL‘“

~.CODE |

SETUP_ ‘INT PROC

;saves old vector and sets up new' vector
;input: ‘AL = interrupt number-

H DI = address of buffer for old vector
; S1 = address of buffer contalnxng new vector
;save- old interrupt vector
" MOV AH, 354 :function 35h, get vector
INT 21H ;ES:BX = vector
" MOV {DI),BX" ;save offset

MOV [DI+2);ES~ - ;save segment

320 . 155 User Interrupt Procedures

;setup new vector.

MOV DX, [SI] ;DX has offset
. . PUSH Ds . s;save DS
MOV DS, {SI+2] ;DS has 'segment number
MoV AH, 25H - ;function 25h, set vector
INT 21H ;
POP DS ;restore DS
RET
SETUP_INT ENDP
END

Cursor Control

Each display of the current time by INT 21h, function 9, will advance
the cursor. If a new time is then displayed, it appears at a different screen
position. So, to view the time updated at the same screen position we must
restore the cursor to its original position before we display the time. This is
achieved by first determining the current cursor position; then, after each
print string operation, we move the cursor back.

We use the INT 10h, functions 3 and 2, to save the original cursor
position and to move the cursor to its original position after each print

string operation.

INT 10h, Function 2:
Move Cursor

Input: AH =2
BH = page number
DH = row number
DL = column number
Output: none

INT 10h, Function 3: ‘ ¥
Get Cursor Position

Input: AH =3
BH = page number
Output: DH = row number
DI. = column number
CH = starting scan line for cursor
CL = ending scan line for cursor

Interrupt Procedure
- - ..When an intcrrupt procedure is activated, it cannot assume that the
DS register contains the program'’s data segment address. Thus, if it uses ary
variables it must first reset the DS register. The DS register should be restored
before ending the interrupt routine with IRET.

Te o

Chapter 15 BIOS and DOS Interrupts - 321

.

Program listing PGM15_2.ASM contains the MAIN procedure and

the interrupt procedure TIME_INT. The steps in the MAIN procedure are (1)
save the current cursor position, (2) set up the interrupt vector for TIME_INT,
- (3) wait for a key input, and (4) restore the old interrupt vector and terminate.

offset
buffer

To do step 2, we use the pseudo-ops OFFSET and SEG to obtain the
and segment of procedure TIME_INT; the vector is then stored in the
NEW_VEC. The procedure SETUP_INT, is called to set up the vector

for interrupt type 1Ch, timer tick. The interrupt 16h, function O is used for

step 3,

key input. Procedure SETUP_INT is again used in step 4; this time SI

points to the old vector and DI points-to the vector for TIME_INT.

* The steps in the procedure TIME_INT are (1) set DS, (2) get new time,’

- (3).display time, (4) restore cursor position, and (5) restore DS.

terrup

The program operates like this: After setting up the cursor and in-
t vectors, the MAIN procedure just waits for a keystroke. In the mean-

time, the interrupt procedure, TIME_INT, keeps updating the time whenever
the timer circuit ticks. After a key is hit, the old interrupt vector is restored
and the program terminates.-

Program Listing PGM15_2.ASM
TITLE PGM15_2: DISPLAY ' TIME VERJZ
;program ‘that - dlsplays the current time

*rand

updates the time-18.2 times a second
EXTRN GET_TIME: NEAR SETUP_INT:NEAR

.MODEL SMALL
.STACK 100H
".DATA
TIME_BUF DB 00:00: 00$' .itime buffer hr:min:isec
“ CURSOR_POS DW ? ® ;cursor position (row:col)
NEW_VEC DW 2.2, inew interrupt vector
OLD_VEC DW ?,7? ;old interrupt vector
.CODE
"MAIN - PROC ‘
MGV AX; @DATA"
Mov DS, AX ;initialize DS
;save cursor position hemT
Mov AH, 3 ;function 3, get cursor
MoV BH, 0 ;page 0 o
COINT R 10Ht oY ;DI = row, DL *~ col*
. =~ MOV - CURSOR:POS,DX'- - ;save ‘it R
‘;set up Lnterrupt pzocedure by~
. ;placing segment:offset- of: S“TIME_INT in NEW_VEC
< MOV @ .NEW_VEC,OFFSET. TIME_INT - ;offset
MOV NEW_VEC+2, SEG.iTIME IINT ; segment
LEA® ° DIJOLD.VEC * * ;DI points to vector buffer
JLEA . "SI,NEW_VEC. ' .7 ;ST points to new vector
_ MoV AL, 1CH itimer interrupt
' CALL SETUP_INT :setup new interrupt vector
;read keyboazd
MOV ~AH 0
. INT 16H
.restore old interrupt vector
LBA DI, NEW_.VEC .o 73iDI points to vector buffer

LEA SI,0OLD VEC ;SI points to old vector

stimer interrupt —_—

;restore old vector

sreturn
+sto DOS

;save current DS
/set it to data segment

;BX points to time buffer
;store time in buffer

;DX points to TIME_BUF
;display string

;function 2, move cursor
;page 0
;cursor position,DH=row,DL=col

N

;restore DS

;end of interrupt procedure

The LINK command. should include the‘ modules PGM15_2,

322 156 Memory Residettt Program
MOV AL,1CH
CALL SETUP_INT °
MOV AH,' 4CH
INT © 21H
MAIN ENDP
TIME_INT PROC
;interrupt procedure
;activated by the timer
PUSH DS
MOV AX, @DATA
MOV DS, AX
;get new time
LEA BX, TIME_BUF
CALL GET_TIME
;display time
LEA DX, TIME_BUF
- “MOV- 'AH,D9H
INT 21H
;restore cursor position
Mov AH, 2
h MOV BH,0 .
MOV DX, CURSOR_POS
INT 10H
POP Ds
IRET
TIME_INT ENDP
END MAIN
PGMI15_1A, and PGM15_2A.
15.6

Memory Resident
Program

We will write the third version of DISPLAY_TIME as a TSR (tcrmi-
nate and stay resident) program. Normally, when a program termi- -
nates, the memory occupied by the program is used by DOS to load other

-programs. However, when a TSR program terminates, the memory occupled

is not released. Thus, a TSR program is also called 2 memory resident

program.

To return to DOS, a TSR prograrn is teriiinated by using either INT

27h or INT 21h, function 31h. Our program usecs INT 27h..

INT 27h: .
Terminate and Stay Resident

Input:

Output: -none

DS:DX = address of byte beyond the part that is
Sewr --es s ebuto remain resident

Chapter 15 BIOS and DOS interrupts 328

We write our program as a .COM program because to use interrupt 27h, we
need to determine how many bytes are to temain memory resident. The
structure of a :COM 'program makes this casy because there is only onc¢
program segment. Another reason for using a .COM program is the sizc
consideration. As we'saw in Chapter 14, a2 .COM program is smalier in su(
than its .EXE counterpart. So, to save space, TSR prograins arc often writtert
as .COM programs.

Once terminated, a TSR program is not active. It mnust be acuvah.d
by some external activity, such as a certain key combination or by the timer.
The advantage of a TSR program is that it may he activated while some other
program is running. Our program will become active when the Cirl and right
shift keys are pressed. |

To keep the program small, it will not update the time. We leave it
as an exercise for the reader to write a TSR progiam that updates the time
every second. ‘

The program has two parts, an initialization part that sets up the
interrupt vector, and the interrupt routine itself. The procedure INFTIALIZE
initializes the interrupt vector 9 (keyboard interiupt) with the address of the
‘interrupt procedure MAIN and then calls INT 27h to termtinate. The ‘address

- passed to INT 27h is the beginning address of the INITIALIZE procedure; this
" is possible because the instructions are no longer needed. The procedure
INITIALIZE is shown in program listing PGM135_3A.ASM.

. Program Listing PGM15_3A.ASM
~. TITLE PGM1%_3A:SET UP TSR PROGRAM

EXTRN MAIN:NEAR, SETUP “INT:NEAR

EXTRN NEW_VEC:WORD, OLD ve:c DWORL -
PUBLIC INITIALIZE . DA RPN)
C_SEG SEGMENT ' .« ' ’ PUBLIC

ASSUME CS:C_SEG
INITIALIZE PRCC
;set up interrupt vector

MOV NEVW_VEC, OFFSET MAIN ;stare addrese

MOV NEW_VEC+2,CS ;segment

LEA Di,0LD_YEC ’ sDT Hoyints ra vesto: buffcer
JLEA - SI,NEW_VEC. ;31 points Lo new vertor

MOV AL, 0%9H ikeyboard interrupt

CALL SETUP_INT ;Set interiupt vector

;exit to DOS : .
LEA DX, INITIALI&E ;
INT 27H sterminate and stay resicent

INITIALIZE ENDP
C_SEG ENDS
..END

““’There are a number of ways lor the interrupt routine 1o detect a par-
_ticular key combination. The simplest way is Lo detect the control and shift keys
by checking the keyboard flags. When activated by a keystroke, the interrupt
routine calls the old keyboard interrupt routine to handle the key input. To
detect the control and shift keys, a program can examine the keyboard flags at
the BIOS data area 0000:0417h or use IN1 16h, function 2. .

324 15.6 . Memory Resident Program

INT 16h, Function.2:
Get Keyboard Flags .
Input: - ¥+ 'AH =2 T
"Output: - AL-'= key flags
bit meaning)
7=17¢ insert on
T 6=1" Caps'Lock on
S=1 Num Lock on-
4=1 Scroll Lock on
3=1 Alt key down
2=1 Ctrl key down
1=1 left shift key down
0=1 right shift key down

.We will use the Ctrl and right shift key combination to activate and
deactivate the clock-display. When activated, the current time will be dis-
played on the upper right-hand corner. We must first save the screen data
so that when the clock display is deactivated the screen can be restored.

The procedure SET_CURSOR sets the cursor at row 0 and the column
given in DL. The procedure SAVE_SCREEN copies the screen data into a buffer
called SS_BUF, and the procedure RESTORE_SCREEN moves the data back to
the screen buffer. ‘All three procedures are shown in program listing
PGM15_3B.

Program Listing PGM15_3B.ASM-
TITLE .PGM15_3B: SAVE SCREEN AND CURSOR
¢ _EXTRN SS_BUF:BYTE

PUBLIC SAVE_SCREEN, RESTORE_SCREEN, SET_CURSOR
C_SEG SEGMENT PUBLIC

ASSUME Cs:C_SEG
SAVE SCREEN PROC
;savgs 8 characters from upper right hand corner of

s screen
LEA DI,SS_BUF ;screen buffer
MOV CX,8 ;repeat 8 times
MoV DL, 72 ;column 72
CcLD ' ;jclear DF for string operation
"SS_LOOP: ’
CALL SET_CURSOR ;setup cursor at row 0,col DL
MOV AH, 08H ;read char on screen .
INT 10H ;AH = attribute, AL = character
STOSW ;stores char and attribute
INC DL . ;next col
Loop SS_LoOP .
RET .

_ SAVE_SCREEN ENDP
RESTORE_SCREEN. , . _ PROC

;restores saved screen

LEA SI,SS_BUF ;S1 points to buffer
MoV DI1,8 ;repeat 8 times

MOV DL, 72 ;column 72

P

Chapter 15 . BIOS and DOS Interrupts 325

MOV CX, 1 ;1 char at a time
RS_LOOP: CTat
." . CALL SET_CURSOR ;move cursor
* LODSW ;AL '=-char, AH = attribute

MOV - BL,AH’ “;attribute to BL
MOV AH, 09H "; function 9, write char and attribute
MOV ™ BH;0: ;page 0
IN? 10H
"INC " DL: ,next char position
DEC pr' ° -move characters?
JG RS_LOOP - ';yes, repeat
RET - BT

RESTORE_SCREEN - ' ENDP-
SET_CURSOR PROC .
;sets cursor at row 0, column DL

;input DL = column number
MOV AH, 02 ;function 2, set cursor
MOV BH, 0 T ;page O
MOV DH,0 - {;row O
INT 10H
RET

SET_CURSOR ENDP
C_SEG ENDS
END

PR .
We are now ready to write the interrupt routine. To determine

" whether to activate or deactivate the time display, we usc e variable

ON_FLAG, which is sct to 1 when the time is being displayed. Procedure
*MAIN is the interrupt procedure.’,

The steps in procedure MAIN are (1) save all registers used and set
up the DS and ES regnstcrs, (2) call the old keyboard interrupt routine to
handle the key input,”(3).check to sec if both Ctrl and right shift keys are
down; if not, then exnt (4) test ON_FLAG to dcetermine status, and if
ON_FLAG is 1 then restore “screen and exit, (5) save current cursor position
and also the display scrcen info, and (6) get time, display time, then exit.

_* In step 1, to set up the registers DS and ES we use CS. It might be
tempting to use the value C_SEG instead; however, segment values cannot

“be used in a .COM program. In.step 2, we necd to push the FLAGS register

so'that the procedure call simulates an interrupt call. In step 0, we used the
BIOS interrupt 10h instead of the DOS interrupt 21h, function 9, to display
the time, because from experience, the INT 21h, function 9, tends to bhe
‘unreliable in a TSR-program.

" Program Listing l‘Gf\MS}.ASM .o

TITLE K PGM15_3: TIME_DISPLAY_VER_3
;memory rcsident program that shows <urrent t:me of day
;called by Ctrl-rt shift key combinaticn

_EXTRN INITTALIZE:NEAR, SAVE_UCREEN:MNEAR
. FXTRN RESTORE_SCREEN: NEAR,SET CURSQOR: NEAR
"EXTRN GET TIME:NEAR - .

32&.

156,A«ynoozﬂeddbhtfhxwan1~

PUBLIC MAIN

PUBLIC NEW_VEC,OLD_VEC,SS_BUF

C_SEG SEGMENT.

PUBLIC

ASSUME CS:C_SEG, DS:C_SEG,

55:C_SEG

ORG 100H
START : JMP INITIALIZE

’

SS_BUF DB 16 DUP(?)
TIME_BUF DB '00:00:00S'
CURSOR_POS DW ?
ON_FLAG DB 0
NEW_VEC oW 2,2

2

OLD_VEC DD

MAIN PROC
;interrupt procedure
isave registers

i PUSH DS
PUSH ES
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
"PUSH DI

MOV AX,CS
MOV DS, AX
MOV ES,AX
;call old keyboard interrupt
PUSHF '
CALL OLD_VEC
;get keyboard flags
MOV AX,CS
MOV DS, AX
MOV ES,AX
MOV AH, 02

INT 16H
TEST AL,1
JE I_DONE

TEST AL, 100B

JE i_DONE
;yes, process

CMP ON_FLAG,1

JE RESTORE

MOV ON_FLAG,1

;save screen buffer

;time buffer hr:min:sec

;cursor position

;1 = interrupt procedure running
jcontains new vector

;contains old vector

/set DS

;and ES to current segment
procedure
;save FLAGS

;reset DS

sand ES to current segment
;function 2, keyboard flags
;AL has flag bits

;right shift?

;no, exit
;Ctrl?
;no, exit

;procedure active?
;yes, deactivate
;no, activate

;—sdve cursor position and screen info

MOV AH, 03"
MOV BH, 0
INT 10H
MoV CURSOR_POS, DX

v

;get cursor position
ipage O
;DH = row, DL = col
;8ave it

~CALL- ~SAVE_SCREEN™"""";save time display sCreen
;—position cursor to upper right corner ’

MOV DL, 72
CALL SET_CURSCR

;column 72
;position cursor in row Q,col 72

Chapter, 15: . BIQS and DQS Integrupts:

LEA BX, TIME_BUFE :
CALL GET_TIME °: . iget current time
:;—display time S
LEA S1,TIME_BUF

MOV © CX,8 - L ;8 chars
- MOV BH, 0 . ;page O
MOV AH, OCH ;write char
M1: LODSB ’ L ;char in AL
ANT 10R ;cursor is moved te next
.Loop ‘M1 *. N ;1o0p back if more chars
. JMP. RES_CURSOR- '
RESTORE: . d '
;restore screen .
MOV ON_FLAG, 0 . ;clears flayg

CALL RESTORE_SCREEN
;restore saved cursor position

RES_CURSOR: -
MOV .AH, 02 T ;set cursor
MOV BH,0.- .
MOV DX, CURSOR_POS
oo INT 10H .
;restore registers
I_DONE: -
- POP DI
" POP SI
. POP DX
- POP CcX
POP BX
POP AY.
POP ES
POP DS !
~ IRET - sinterrunt return
MAIN , ENDOP
C_SEG ENDS . . .
END START . . ;starting instruction

327

col

Because the program has been written as a .COM program, we need
to rewrite the file containing the GET_TIME procedure with full segment
directives.” The file PGM15_3C.ASM contains GET_TIME, CONVLERT, and

SETUP_INT. .

Program Listing PGM1S_3C.ASM.
TITLE PGM15_3C: GET AND CONVERT TIME TO ASCII
_PUBLIC GET_TIME, SETUP_INT
C_SEG SEGMENT . PUBLIC
ASSUME CS:C_SEG

GET_TIME PROC

;get time of day and store ASCII digits in time buffer

;input: BX = address of time buffer

328 15.6 Memory Resident Program

MOV . AH, 2CH ;get time
INT 21H ;CH = hr, CL = min, DH = sec
;convert hours into ASCII and store
MOV AL,CH ;shour
CALL CONVERT ;convert to ASCII
MoV {BX]),AX ;store .
;convert minutes into ASCII and store
MOV AL,CL ;minute
CALL CONVERT sconvert to ASCII
MOV [BX+3],AX ;store
;convert seconds into ASCII and store
MoV AL, DH ; second
" CALL CONVERT ;convert to ASCII
MOV {BX+6],AX ;store
RET .
GET_TIME ENDP
CONVERT PROC
;converts byte number (0-59) into ASCII digits
;input: AL = number
;output: AX = ASCII digits, AL = high digit, AH = low
;digit
MOV AH, 0 ;clear AH
MOV- DL,10 ;divide AX by 10
DIV DL ;AH has remainder, AL has quotient
OR AX, 3030H ;convert to ASCII, AH has low digit
_RET ;AL has high digit
CONVERT ENDP
‘
SETUP_INT PROC
;input: AL = interrupt type
H DI = address of buffer for old vector

’

. save
MOV AH, 35H
INT 21H
MOV (DI),BX
MOV {DI+2],ES
;isetup new vector
MOV DX, [SI])
PUSH DS’
MoV DS, [SI+2])
MOV AH, 25H
INT 21H
POP DS
RET
SETUP_INT . ENDP.~
C_SEG ENDS

END

SI = address of buffer containing new vector
old interrupt vector :

; function 35h,
;ES:BX = vector
;save offset
;save segment

get vector

:DX has offset .

:save ‘it

;DS has segment number

; function 25h, set vector

;

;restore DS

Chapter 15 BIOS and DOS interrupts 329

"The LINK command should be LINK PGM15_3 + PGM15_3B + PGM15_3C
+ PGM15_3A. Notice that PGM15_3A is linked last so that the procedure
INITIALIZE is placed at the end of the program. Writing TSR programs is
tricky; if there are other TSR programs on your system, your program may
not function properly.

Summary

‘e An intérrupt may be requested by a hardware device or by a
program using the INT instruction or generated internally by the
processof.

* The INT instruction calls an interrupt routine by using an inter-
- - rupt number.

" The 8086 supports 256 interrupt types and the interrupt vectors (ad-
. dresses of the procedures) are stored in the first 1 KB of memory.

e The interrupts 0-1FH call BIOS interrupt routines and the inter-
‘rupt vectors are sct up by BIOS when the computer is powered up.

* The interrupts 20H-3Fh call DOS interrupt routines.

e Users can write their own interrupt routines to perform vanous
tasks.

-y

< . i
* A memory rcsrdent program may be activated by a combination
of keystrokes. "

Glossary
conventional memory - . The first 640 KB of memory
hand-shaking A protocol for devices to communicate
with each other

hardware intcrrupt A bardware device interrupting the

. processor '
interrupt acknowledge A signal gencrated by the processor
signal accepting an interrupt request signal
interrupt number A number identifying the type of interrupt

interrupt request signal A signal sent by a hardware device to the
processor requesting service

interrupt routine A procedure invoked by.an interrupt
interrupt vector The address of an interrupt routine
interrupt vcctor table The set of all interrupt vectors

mempry resident program A TSR program

NMI (nonmaskable A hardware interrupt that cannot be
intcrrupt) masked out by clearing the IF

processor cxception A condition of the processor that requires

special handling
TSR (terminatc and stay A program that remains in memory after
resident) program termination
software interrupt An INT instruction

330 Exercises

New Instructions
IRET

New Pseudo-Ops
OFFSET - SEG

Exercises

1. Compute the location of the interrupt vector for interrupt 20h.
. Use DEBUG to find the value of the interrupt vector for interrupt O.
3. Wirite instructions that use the BIOS interrupt 17h to print the
message “Hello”.
4. Write instructions that use the INT 21h, function 2Ah, to display
the current date.

Programming Exercises

S. Write a program that will output the message “Hello” once every
half second to the screen. ,

6. Modify PGM15_2.ASM so that' INT 21h, function 9, is called to
display the time only when the seconds change.

7. Wirite a memory resident program similar to PGM15_3.ASM using
INT 21h, function 31h. . :

Color Graphics

PN

Overview

In Chapter 12,7 we showed how the screen can be manipulated in
text mode:.In this chapter, we discuss the graphics modes of the PC. There
are three common color graphics adapters for the 'C: CGA (Color Graphics
Adapter), EGA (Enhanced Graphics Adapter), and VGA (Video Graphics Ar-
ray): We describe their operations and programming, and also show how to
write an interactive video game program.’

16.1
Graphics Modes

As noted in Chapter 12, the screen display is composed of lines
traced by an clectron beam; these lines are calied scan lines. A dot pattern
is created by turning the beam on and off during the scan; the dot patterns
generate characters as well as pictures on the screen. The video signal con-
trolling the'scan is generated by a video adapter circuit in the computer.

A video adapter can’vary the number of dots per line by changing
the size of a dot. Some adapters can also change the number of scan lines.

Pixels
In graphics mode operation, the screen display is divided into col-

umns and rows; and cach screen position, given by a column number and

rpw number, is called a pixel (picture clement). The number of columns
and rows'give the resolution of the graphics mode; for example, a resolution
of 320 x 200 means 320 columns and 200 rows. The columns are numbered
from left to right starting with 0, and thce tows are numbered from top to
, bottom starting with 0. For example, in a 320 x 200 mode, the upper-right
corner pixel has column 319 and row 0, and the lower-right corner pixel has
column 319 and row 199. Scc Figure 16.1.

331

332 16.1 Graphics Modes

Figure 16.1 Pixel
Coordinates in 320 x 200
Mode

Column ‘ Column
319

Row 0

Row 199

Depending on the mapping of rows and columns into the scan lines
and dot positions, a pixel may contain one or more dots. For example, in
the low-resolution mode of the CGA, there are 160 columns by 100 rows,
but the CGA generates 320 dots and 200 lines; so a pixel is formed by a 2
x 2 set of dots. A graphics mode is cilled APA (all points addressable)
if it maps a pixel into a single dot.

' Table 16.1 shows the APA graphics modes of the CGA, EGA, and
VGA. To maintain compatibility, the EGA is designed to display all CGA
modes and the VGA can display all the EGA modes.

Mode Selection
The screen mode is normally set to text mode, hence the first oper-

- ation to begin a graphics display is to set the display mode. We showed in

Chapter 12 that the BIOS interrupt 10h handles all video functions; function
0 sets the screen mode. .

Table 16.1 Video Adapter Graphics Display Modes

Mode Number (hex) ~ CGA Graphics
4 320 x 200 4 Color
) ! 320 x 200 4 Color (color burst off}
6 640 x 200 2 Color

EGA Graphics

D 320 x 200 16 Color

E 640 x 200 16 Color

F 640 x 350 Monochrome

0 640 x 350 16 Color
VGA Graphics

1) ' 640 x 480 2 Color

12 640 x 480 16 Color

13 320 x 200 256 Cuiur

1

Chapter 16 Color Graphics 333

! INT t0h Function 0:
Set Screen Mode

laput: =~ AH=0 ° -
o AL = mode number
Output: none

Example 16.1 Set the display mode to 640 x 200 two-color mode.

Solution: .From Table 16.1, the mode number is 06h; thus, the instruc-

tions are

MoV '.'.AH,O ‘. " ;function 0
MOV "' AL, 06H ~ imode 6
INT 10H ;select mode

CGA Graphics " ""-" The CGA has three graphics resolutions: a low resolution of 160 x
_ 100, a medium resolution of 320 x 200, and a high resolution of 640 x 200.
Only the medium-resolution and high-resolution modes are supported by
the BIOS INT 10h routine. Programs that use the low-resolution mode must
-access the video controller chip directly, !
. _The CGA adapter has a display memory of 16 KB located in segment
B800h; the memory addresses are from B800:0000 to B80O0:3FFF. £ach pixel
is represented by one or more bits, depending on the mode. For example,

Table 16.2 Sixt—een Standar& CGA Colors

IRGSB Color

0000 Black

0001 Blue

0010 Green

0011 Cyan.

06100 Red _
0101 Magenta (purple)
0110 Brown

o111 White

1000 Gray

1001 Light Blue
1010 Light Green
1011 Light Cyan
1100 Light Red
t101 Light Magenta
1110 Yellow

1111 infense White

333

16.2 CGA Graphics

high resolution uses one bit per pixel and medium uses two bits per pixe?’
The pixel value identifies the colar of the pixel.

Medium-Resolution Mode

The 'CGA can display 16 colors; Table 16.2 shows the 16 colors of
the CGA. In medium resolution, four colors can be displayed at one time.
This is due to the limited size of the display memory. Because the resolution
is 320 x 200, there are 320 x 200 = 64,000 pixels. To display four colors, each
pixel is coded by two bits, and the .memory requirement is 64000 x 2 =
128000 bits or 16000 bytes. Thus, the 16-KB CGA display memory can only
support four colors in this mode.

To allow different four-color combinations, the CGA in medium-res-
olution mode uses two palcttes; a palette is a set of colors that can by
displayed at the same time. Each palette contains three fixed colors plus a
Background color that can be chosen from any of the standard 16 colors.
The background color is the default color of all pixels. Thus, a screen with
the background color would show up if no data have been written. Table
16.3 shows the two palettes.

The default palette is palette 0, but a program can select either palette
for display. A pixel value (0-3) identifies the color in the current selected
palette; if we change the display palette. all the pixels change color. INT 10h,
function 0Bh, can be used to sclect a palettc or a background color.

INT 10h, Function 0Bh:
‘Select Palette or Background Color

Subfunction0: Select Background

Input: AH = 0Bh
BiI =0 - ’ :
BL = color number (0-15
Output: none

Subfunction 1: Select Palette

Input: All = 0Bh
BH = 1 _
BL. = palette number (0 or 1)

Output: none

Table 16.3 CGA Mode, Four-Color ﬁalettes

Palette Pixel Value . Color

0 0 Background
1 Green
2 Red
3 Brown

1 0 Background
1 Cyan
2 Magenta
3 White

Chapter 16 Color Graphics 335

I:xmnplc 16.2 Write instructions that sclect palette 1 and a background
«color-of light. blue.'

.

soluiioin Light b‘iue has color numbér 9. Thus,

MOV AH,O0BH’ ; function OBh

MOV BH,00H iselect background color
MpV - BL,9 . ;light blue

INT 10H) ')

MOV BH,1 ;select palette .

MOV BL,1 ;jpalette 1

INT 10H -

‘Reading and Writing Pixels
i. . :
To read or write a pixcl, we must identity the pixel by its column and

_row numbers. The functions 0Dh and OCh are for read and write, respectively.

INT 10h, Function 0Ch:
‘Write Graphics Pixel

Input: ~ AH =0Ch i

’ AL = pixel value
Bl = page (for the CGA, this value is ignored)
CX = column number
DX = row number

Output: nonc

INT 10h, Function 0Dh: .
Read Graphics Pixel

Input: All = 0Dh
BH = page (for the CGA, this value is ignored)
CX = column number
, DX = row number
Qutput: AL = pixel value

Example 16.3 Copy the pxxcl at column 50, row 199, to the pixel at
column 20, and row 40. -

Solution: We first read the pixel at column 50, row 199, and then write
to the pixel at column 20, row 40.

MOV ~ AH,ODH " ;read pixel

MOV cX, 50 ;jcolumn 50

MOV DX,199 ;row 199

INT 10K ;AL gets pixel valiue

MOV AH, OCH ;surite pixel, AL is already set
MOV CX,20 7 - ;column 20

MOV DX, 40 ;row 40

INT 10H

336

16.2 CGA Graphics

High-Resolution Mode

In high-resolution mode, the CGA can display two colors, each pixel
value is either 0 or 1; O for black and 1 for white. It is also possible to select a
background color using INT 10h, function OBh. When a background color is
selected, a O pixel value is the background color, and a pixel value of 1 is white.

We now show a complete graphics program.

Example 16.4 Write a program that draws a line in row 100 from col-
umn 301 to column 600 in high resolution.

Solution: The organization of the program is as follows: (1) set the dis-
play mode to 6 (CGA high resolution), (2) draw the line, (3) read a key in
put, and (4) set the mode back to 3 (text mode). Step 3 is included so
that we can control when to return to text mode; otherwise, the line
would disappear before we can take a good look.

Program Listing PGM16_1.ASM

TITLE PGM16_1: CGA LINE DRAWING
;draws horizontal line in high res
sin row 100 from csl 301 to col 600°
.MODEL SMALL

.STACK 100H

‘

.CODE
MAIN PROC
;set graphics mode
© MoV AX, 6 ;select mode 6, hi res
INT 10H
;draw line .
' MOV AH, OCH - jwrite pixel
MOV AL,1 " :white
" Mov CX, 301 ;beginning col
MOV DX, 100 ;row
L1: INT 10H)
INC CX ;next col
CMP CX, 600 ;more columns?
JLE L1 ;yes, répeat
;read keyboard
MoV AH, O
INT 16H
;set to text mode
MOV AX, 3 ;select mode 3, text mode
INT - 10H ' -
;return to DOS N
MOV AH, 4CH sreturn
INT 21H . ;to DOS
MAIN - ENDP ’ c

cany

END ‘MAIN

Chapter 16 Color Graphics 337

Writing Directly to Memory

" When we wish to do fast screen updates, as in video game playing,
we can bypass the BIOS routines and write directly to the CGA video display
memory. To do so, we need to understand the organization of the CGA
display memory. The CGA’s 16-KB display memory is divided into two halves.
Pixels in even-numbered rows are stored in the first 8 KB (B800:0000 to
B800:1FFF), and pixels in odd-numbered rows aré stored in the second 8 KB
(B800:2000 to B80O:3FFF). Each row is represented by 50h bytes. Figure 16.2
shows the relationship between the display memory address and the screen
display.

To locate the bit positions for a particular pixel in a display mode,
we first determine the starting byte of that row and then the offset in the
row for that pixel. We now show an example.

Example 16.5 Let the graphics mode be mode 4. Determine the byte ad-
dress and bit positions for the pixel in row §, column 10.

Solution: Row S§ is the third odd-numbered row, so the starting byte for
row S has an offset address of 2000h + 2 x 50h = 20A0h. In mode 4, each
pixel is two bits, so each byte can store four pixels. Column 10 is the elev-
enth column in the row,'so the pixel must be the third pixel in the third
byte. The byte address Is 20A0h + 2 = 20A2h. Pixels are stored starting

‘from the left in a byte, so'the third pixel has bit positions 3 and 2.

Example 16.6 Suppose the current display mode is mode 4. Write a
pixel value of 10b at row §, column 10.

Solution: We use the address computed in the last example. To write
a pixel, we first read the byte containing the pixel, change the appro-
priate bits, and then write back. The reason for read before write is to
preserve other pixel values contained in the same byte. To change the
bits, we first clear them using an AND operation, and then write the
data using an OR operation.

-

. - Figure 16.2 CGA Display
Address

. Screen
- 8800:0000 —»Row O
B800:2000 —» Row 1
B800:0050 —» Row 2
-+ B8800:2050 —» Row. 3

.‘
r
i

B800:1EF0 —PRow 198
B800:3EFO —PRow = 199

——- o —= ' ’ J

338

16.2 CGA Graphics

MOV AX, 0BBOOH ;video memory segment number
MOV ES, AX ;place in ES
MOV DI, 20A2H ;joffset of byte

© MOV AL,ES: {DI]) ;move byte .into AL

AND AL,11110011B ;clear the data bit positions
OR AL,1000B ;write 10b into bit positions 3,2
STOSB : ;store back to memory

Displaying. Text

It is possible to display text in graphics mode. Text characters in
graphics mode are not generated from a character generator circuit as in text
mode. Instead, the characters are selected from the character fonts stored in’
memory. Another difference between text mode and graphics mode is that
the cursor is not being displayed in graphics mode. However, the cursor
position can still be set by INT 10h, function 2.

Example 16.7 Display the letter “A” in red at the upper right corner of
the screen. Use mode 4 and a background color of blue.

Solution: When we display characters in graphics mode, we use text co-
ordinates. With the 320 x 200 resolution, there are only 40 text columns,
see Table 16.4. Thus, the row and column numbers of the upper-right cor-
ner are 0 and 39, respectively. To display a red letter and blue back-
ground, we use palette O with blue background color.

‘The steps are as follows: (1) set to mode 4, default palette is O, (2) set
background color to blue, (3) position cursor, and (4) display letter “A” in red.

MOV . AH,O0 ;set mode

MOV AL,04H | ;mode 4
INT 10H - .

MOV AH, OBH ;function OBh

MOV B8H, 00R ;select background colcr
MCV BL, 3 sblue '

INT 10K

MOV AH, 02 ;set cursor

MOV BH, 0 ;page 0

MOV DH,O0 ;row O

MOV DL, 39 ;col 39

INT 10H

MOV AH, 3 ;write char function

-

Table 16.4 Text Columns and Rows in Graphics Mode

Graphics Resolution Text Text
Columns . Rows
320 x 200 4 - 25
640 x 200 80 25
640 x 350 80 . 25

640 x 480 80 29

Chapter 16 Color Graphics 339

MOV, .. AL, A’ Li'A’
MOV BL, 2 . ;ted color
MOV CX,1 ;write 1 char

INT 10H

16.3
EGA Graphics

The EGA adapte:"can generate either 200 or 350 scan lines. To display
the higher resolution, an ECD (enhanced color display) monitor is
required. The EGA has sixteen palette registers; these registers store the current
display colors. There are six color bits in each palette register; two for cach

- primary color. This rneans that each palette register is capable of storing any/

one of 64 colors and thus, the EGA can display 16 colors out of 64 at one
time. In the 16-color EGA modes, each pixel value selects a palette register.
Initially, the 16 palette registers are loaded with the standard 16 CGA colors.
To display other.colors on the screen, a program can modify these registers
using INT 10h, function 10h, subfunction Oh (see Appendix C).

The EGA adapter can emulate the CGA graphics modes, so that a
program written for the CGA can run in EGA with the same colors. ts display
memory can be configured by software. Depending on the display mode,

" the display memory may have a’starting address of AOOOOh, BOOOOH, or

B800Oh. In displaying CGA modes, the EGA memory starts at B800Oh so as
to remain compatible with the CGA display memory.

In displaying EGA modes, the display memory has the following strue-
ture. It js located in segment AOOOh and uses up to 256 KB. To accommodate
256 KB in one segment, the EGA uses four modules of up to 64 KB each. The
four modules, called bit planes, share the same 64 K memory addresses; each
address refers to four bytes, one in each bit plane. The 8086 cannot access the
bit planes directly; instead, all data transfer must go through EGA registers.

With this much storage, we can see that the display memory may
hold more than one screen of graphics data. In EGA modes, the display
“ emory is divided into pages, with each page being the size of one screen

- of data. The number of pages allowed depends on the graphics mode and
- the display memory size. For example, for the display mode D (320 x 200
" with 16 colors) there arc 64000 pixels and 4 bits for each pixel. Thus, the

memory requirement for one screen is 32000 bytes. if the display memory
is 256 KB, then it is possible to have eight display pages (0 to 7). There Wl“
be fewer pages if the memory is less.

- . When we use functions OCh and 0Dh to read or write pixels, the
page number is specified in BH. These functions can be used on any page
regardless of which page is being displayed.

Example 16.8 Assume that we are usirrg a 16-color palette, write a
streen pixel to page 2 at column 0, row 0.

Solution: We use function OCh and a color valuc of 2.

MOV AH, OCH ,wrlte pixel funcrxon
MOV AL;2 " igreen ‘

MOV'. BH,2 ;page 2

MOV CcX,0 ;column 0

MOV DX,0 srow 0

INT 10H

340 16.4 VGA Graphics

When a graphics mode s first selected, the active display page is automati-
cally set to page 0. We can select a different active display page by using
function OSh.

INT 10h, Function 5:
Select Active Display Page

Input: AH =5 ,
AL = page number N
Output: none '

E&le 16.9 Select page 1 to be displayed.

Solution:

MoV AH, 05H ;select active display page
MOV AL, 1 ;page 1

INT 10H

Page switching can be used to do simple animation. Suppose we
draw a figure in page 0, then draw the same figure at a slightly different
position in page 1, and so on. Then, by quickly switching the active display
page, we can see the figure move across the screen. This movement is limited
by the total number of pages available. We show a more practical animation
technique in section 16.5.

16.4
VGA Graphics

The VGA adapter has higher resolution than the EGA; it can display
640 x 480 in mode 12h. There are also more colors: the VGA can generate °
64 levels of red, green, and blue. The combinations of the red, blue, and
green colors produce 643 equals 256 K different colors. A maximum of 256
colors can be displayed at one time. The color values being displayed are
stored in 256 video DAC (digital to analog circuit) color registers. There are 18y
color bits in a color register; six for each primary color. To display all these
colors, we need to have an analog monitor.

-The VGA adapter can emulate the CGA and EGA graphics modes. In
VGA mode, the display memory is organized into bit planes just like the EGA

Let’s look at the VGA mode 13h, which supports 256 colors. In this
mode, each pixel value is one byte, and it selects a color register. The color
registers are loaded initially with a set of default values. It is possible to
change the value in a color registér; but let us first display the default colors.

Example 16.10 Give the instructions that will display the 256 default
colors as 256 pixels in row 100. '

Solution: We begin by selecting fnode 13h, then we set up a loop to
write the value of AL, which goes from 0 to 255 in columns 0 to 255.

Chapter 16 Color Graphics 341

+set mode

<7 MOV "PAR,0 - = ;set mode
MOV AL, 13H ;to 13h
INT 10H ;
;display 256 pixels in row 100
MOV AH, OCH ;write pixel function
< Mov ~ 'AL,0" ;start with pixel color 0
- MOV BH,0 ;page 0O
. .MOV. ‘CX,0 -~ ;column 0
Mo¥ DX, 100 ;row 100
fL1: INT ' 10H- ‘ ;write pixel
- INC © AL - - ;next color
INC CX ' ;next col
CcMP CX,256 - ;finished?
VJIL A ino, repeat

We can set the color in

a color register with function 10h. .
AR Y .. .

. INT 10h, Function 10h, Subfunction 10h:
Set Color Register .- :

Input: AH = 10h
AL =10h
BX = color register
CH = green value
CL = blue value
DH = red value
Output: none

‘Ex‘amplc 16.11 Put the color values of 30 red, 20 green, and 10 blue
into color register S. .

Solution: .
MOV AH,10H ;set color register
MOV AL, 10H ;

MOV BX,5 '’ i;register 5

MOV DH, 30 . ;red value

MOV CH, 20 ;green value

MOV CL,10 ;blue value

INT 10H ’

It is also possible to set a block of color registers in one call; see Appendix C.

16.5

Animation The movement of an object on the screen is simulated by erasing
s the existing object and then displaying it at a new location. We will use a
small ball to illustrate the techniques in animation.
.. For the display, we nced to pick a graphics mode, the ball color, and
" the background color. Because 2ll adapters support CGA modes, let’s choose
mode.4. If we select palette 1 with a green background color, we can show

342 16.5 Animation

a white ball moving on a green background. The ball will be represented by
a square matrix of four pixels; its position is given by the upper left-hand
pixel.

Ball Display

We will confine the ball to an area bounded by columns 10 and 300
and the rows 10 and 189. The boundary is shown in cyan. Initially, let us
set the ball to the middle of the right-hand margin; that is, ball position is
column 298, row 100. .

The procedure SET_DISPLAY_MODE sets the display mode to 4, se-
lects paiette 1 and a green background color, and then draws a cyan border.
The border is drawn by two macros DRAW_ROW and DRAW_COLUMN. The
procedure DISPLAY_BALL displays the ball at column CX row DX with thqr
color given in AL. Both procedures are in program listing PGM16_2A.ASM.

Program Listing PGM16_2A.ASM
TITLE PGM16_2A:
PUBLIC SET_DISPLAY_MODE, DISPLAY BALL

.MODEL SMALL

DRAW_ROW MACRO X
LOCAL L1 .
;draws’ a line in row X from column 10 to col:i-ra 300
MOV AH, OCH ;draw pixel
MOV ‘AL, 1 ;cyan
MoV CX,10 ;column 10
MOV DX, X srow X
Ll: INT 104
INC cX ;next column
cMp cX, 301 ;beyond column 3007
JL L1 .;no, repeat
ENDM
DRAW_COLUMN MACRO Y
LOCAL L2
;draws a line in column Y from row 10 to row 189
MOV AH, OCH ;draw pixel
MOV AL, 1 ;cyan
MOV CX,Y ;column Y
MOV DX, 10 ;row 10
L2: INT 10H
INC DX ;next row
CMP DX, 190 ;beyond row 1892
JL L2 ;no, repeat
ENDM
.CODE
SET_DISPLAY_MODE PROC
;cets display mode and draws boundary
MOV AH, O ; set mode
MOV AL, 04H ;mode 4, 320 x 200 4 color
INT ¢+ 104
MOV AH, 0BH - ;select palette
MOV BH,1

MOV RL, 1 ;palette 1
TNT 1nu ;

Chapter 16 Color Graphics 343

MOV® - BH,O ‘i set background color

MOV © BL;2 ;greén.
INT ~ 10H '

draw’ boundarfy- - - o
DRAW_ROW 10 ;draw row 10
DRAW_ROW- -' 189 - ;draw row 189
DRAW_COLUMN 10 . ;draw column 10
DRAW COLUMN 300 ~° ;draw column 300
RET - . ETEET

SET_DISPLAY_MODE ENDP

DISPLAY_BALL PROC

;displays ball. at .column “CX' and row DX with colocr given
Jin” AL

sinput: AL = color of ball

; CX = column.

H DX = row
MOV AH, 0CH- ;write pixel
INT 10H
INC cX ;pixel on next column
INT 10R’ Lo
INC DX ;down 1 Iow
INT 1CH - . .
DEC cX . s Jpreviosus column
INT 10H
DEC .DX . Jsrestore DX
RET o
DISPLAY_BALL TNDP
END -

Notice that, to erase the ball, all we have to do is display a ball with
the background color at the ball position. Thus v.e can use the DISPLAY_BALL
procedure for both displaying and erasing.

To simulate ball movement, we define a ball velocxty with two com-
ponents, VEL_X and VEL_Y; each is a word variable. When VEL_X is positive,
the ball is moving to the right, and when VEL_Y is positive, the ball is moving
down! The position of the ball is given by CX (colurmm) and DX (row). After
displaying the ball at one position, we erase it and compute the new position
by adding VEL_X.to CX-and VEL_Y to DX. The ball is then displayed at the
new column and row. posmon and the process is repeated.

.The following instructions display a ball at column CX, row DX;
\erase 1t and display it in a new position determined by the velocity.

MOV, AL,3 ,color 3 in pdlette = white
'CALL * DISPLAY_BALL ° ;display white bell

MOV AL, O : Ty color-0 -is background color
,CALL DISPLAY_BALL ';erase ball

ADD CX,VEL X " inew column

ADD . DX, VEL Y inew row ’.

Mov: AL, T . iwhite color

CALL DISPLAY BALL ,dzsplay ball at new position

Because the compﬁter can execute instructions at such a high speed, the ball
will be moving too fast on the screen for us to see. One way to solve the

344

16.5 Anin_gation

problem is to use a counter-controlled delay loop after each display of they

. ball. But due to different operation speeds of the various PC models, such a
delay loop cannot give a consistent delay time. A better method is to use
the timer. We noted in Chapter 1S that the timer ticks 18.2 times every
second.

A timer interrupt procedure is needed for the timing, it will do the
following: each time it is activated, it will set the variable TIMER_FLAG to
1. A ball-moving procedure will check this variable to determine if the timer
has ticked; if so, it moves the ball and clears TIMER_FLAG to 0. The timer
interrupt procedure TIMER_TICK is given in the program listing
PGM16_2B.ASM.

Program Listing PGM16_2B.ASM
TITLE PGM16_2B: TIMER_TICK
itimer interrupt procedure
EXTRN TIMER_FLAG:BYTE
PUBLIC TIMER_TICK
.MODEL SMALL .
.CODE
;timer routine
TIMER_TICK PROC
;save registers

PUSH DS ;save DS
PUSH AX
MOV AX,SEG TIMER FLAG iget segment of flag
MoV DS, AX sput in DS
MOV TIMER_FLAG, 1 ;set flag
;restore registers
POP AX
.POP DS ;restore DS
IRET
TIMER_TICK ENDP . send timer routine
END

Ball Bounce

If we continue to move the ball in the same direction, eventually,
the ball will go beyond the boundary. To confine the ball to the given area,
we show it bouncing off the boundary. First we test each new position before
displaying the ball. If a position is beyond the boundary, we simply set the
ball at the boundary; at the same time, we reverse the velocity component
that caused the ball to move outside. This will move the ball back as if it
bounced off the boundary. The procedure CHECK_BOUNDARY in program
listing PGM16_2C.ASM checks for the boundary condition and modifies the
velocity accordingly.

With "the boundary check procedure written, we can write a
MOVE_BALL procedure that waits for the timer and moves the ball. The
MOVE_BALL procedure first erases the ball at the current position given by
CX,DX; then it computes the new position by adding the velocity and calls
CHECK_BOUNDARY to check the new position; finally, it checks the
TIMER_FLAG to see if the timer has ticked; if so, it displays the ball at the
new ‘position.” The' "MOVE_BALL procedure is in program listing
PGM16_2C.ASM.

Chapter 16 Color Graphics 345

Program Listing PGM16_2C.ASM
TITLE PGM16_2C:
;contains MOVE_BALL and CHECK_BOUNDARY procedures
EXTRN DISPLAY BALL:NEAR
EXTRN TIMER_FLAG:BYTE, VEL_X:WORD, VEL_Y:WORD
PUBLICMOVE_BALL
.MODEL SMALL
.CODE
MOVE_BALL PROC
;erase ball at current position and display ball at new
;position
. ;input: CX = column of ball position
i - DX = row of ball position
serase ball . .
MOV AL, O ;color 0 is background color
CALL DISPLAY BALL ;erase ball
;get new position
ADD CX,VEL_X
‘. ADD DX,VEL_Y
;check boundary
CALL CHECK_BOUNDARY
iwait .for.1l timer tick to display ball
TEST_TIMER:
CMP TIMER_FLAG,1 ;timer ticked?
_JNE TEST_TIMER ;no, Kkeep testing
‘MOV TIMER_FLAG,0 ;yes, reset flag

MOV AL, 3 ;white color
CALL DISPLAY_BALL ;show ball
RET

MOVE_BALL ENDP
CHECK_BOUNDARY . PROC

;determine if ball is outside screen, if so move it
;back in and -change the ball direction

;sinput: CX = column of ball position

; DX = row of ball position

soutput: CX = column of ball position

; DX = row of ball position

ichetk column value N
CMP cX,11 1left of 112
JG L1, ;no, ge check right margin
MOV CX, 11 iyes, set to 11
NEG . VEL_X ;change direction =
JMP L2 . ~ i:go test row boundary

L1l: CMP | CX,298 ;beyond right margin?
JL ‘L2 ino, go test row boundary
MOV CX, 298 ;set column to 298

- NEG VEL_X ;change direction

/check row value ’

L2; CMP DX,11 ;above top margin?
JG L3 :no, check bottom margin
MOV DX, 11 - ;set to 11
NEG VEL_Y _ ichange direction
JHUP DONE ;done

L3: CMP DX, 187 ;below bottom margin?

346

16.5 Animation

JL DONE :ne, done
MOV DX, 187 ;yes, set to 187
NEG VEL_Y ichange direction
DONE:
RET
CHECK_BOUNDARY . ENDP
END

We are now ready to write the main procedure. Our program will use the
SETUP_INT procedure in program listing PGM15_2A in Chapter 15 to set up
the interrupt vector. The steps in the main procedure are: (1) set up the
graphics display and the TIMER_TICK interrupt procedure, (2) display the
ball at the right margin with a velocity going up and to the left, (3) wait for
the timer to tick, (4) call MOVE_BALL to move the ball, (5) wait for the timer
to tick again to allow more time for the ball to stay on the screen, and (6)
go to step 3. The main procedure is shown in program listing PGM16_2.ASM.

Program Listing PGM16_2.ASM

TITLE PGM16_2: BOUNCING BALL
EXTRN SET_DISPLAY_MODE:NEAR, DISPLAY BALL;NEAR
EXTRN MOVE_BALL:NEAR
EXTRN SETUP_INT:NEAR, TIMER_TICK:NEAR

. PUBLIC TIMER_FLAG, VEL_X, VEL_Y

.MODEL SMALL

.STACK 100H

‘

.DATA
NEW_TIMER_VEC DW 2,2
OLD_TIMER_VEC DW 2,2
TIMER_FLAG DB 0
VEL_X DW -6
VEL_Y DW -1
.CODE

MAIN PROC
MOV AX, GDATA
MOV DS, AX ;initialize DS

;set graphics mode and draw border
CALL SET_DISPLAY_MODE

;set up timer interrupt vector
MOV~ NEW_TIMER_VEC, OFFSET TIMER_TICK ;offset
MOV NEW_TIMER_VEC+2,CS ; segment
MOV AL, 1CH ;interrupt type
LEA DI,OLD_TIMER_VEC ;DI points to vector buffer
LEA SI,NEW_TIMER_VEC ;SI points to new vector
CALL SETUP_INT .

;start ball at column = 298, row = 100

;for the rest of the program CX will be column position

;of ball and DX will be row position
MOV CX,298-
MOV DX, 100

Chapter 16 Color Graphics 342

MOV . AL,3 swhite ball
‘CALL.~ DISPLAY BALL - -

;wait for timer tick before moving the bail

TEST_TIMER:

‘CMP TIMER_FLAG,1° stimer tlcked?
JNE TEST _TIMER, ;no, keep Lesting
MOV TIMER_FLAG, 0 ;yes, clear rlag
CALL MOVE_BALL . . . ;move to new position
;deloy 1 timer tick. .
TEST_TIMER_2: T
, " CMP TIMER_FLAG, 1 ;timer ticked?
INE TEST_TIMER_2 ;no, koep testing
MOV TIMER_FLAG, 0 iyes, clear flag
s . JMP ‘TEST TIMER igo get nexl ball pousition
MALIN ENCP :
END MAIN

To tun the program we need to link the object files PGM16 2 +
l’GMlS 2A + PGM]G 2A + PGMIG_ 28 + PGM16_2C. One word of caution,
however: this program has no waytotermlnalc So it may bue necessary to reboot
the system. In section 16.6.2 we discuss a way to terminate the program.

«

16.6
An Interactive
Video Game

In the following sections, we'll develop the bouncinyg ball program
into an interactive video game prograim. lirst, in section 16.6.1, we add sound
to the program,; when the ball hits the boundary a torie is generatad. Secund,
in section 16.6.2, we add a paddlie to allow the playcr to hit the ball. To keep
things simple, the paddle only slides up and down along the left boundary
and is controlled by the up and down arrow keys. If the paddle misses the
ball when it arrives at the left imargin, the game is tenninated. The game
can also be terminated by pressing the Esc key,

16.6.1
Adding Sound

‘The PC has a tone generator that can be set to generate particulas
tones for specified durations. The frequency of the tone generation’ can be
specified by a timer circuit.-

The timer circuit is driven by a clock circuit that has a rate of 1.193
MHz. This is beyond.the rangc of human Hearing. but the timer can generate
output signals with lower frequencies. It does this by generating one pulse
for every N incoming pulses,- whete N can be specitied by a program. The

Jnumber N s tirst loaded.into 8 counter, then, after counting N incoming
, pulses, the circuit produces one pulse. The process is repeated untit a different
.value is placed in the counter. ‘For example, by placing a value of 1193 in
sthe counter, the output is.1000 pulses every second, or 1000 Hz.

2 -« The next thingrin tone generaticn is to-determine the duration To
start the tone, we turn on the timer circuit; after a specitic amount of time,
_we must turn it off. To heep time, we can use the TIMER TICK interrupt

348

16.6 * An Interactive Video Game ‘

routine. Because the TIMER_TICK procedure is activated once every 55 ms,
we get half a second of delay in 9 ticks,

To access the timer circuit, we have to use the 1/0 instmctxons IN
and OUT. They allow data to be moved between an I/O port and AL or AX.
To read an 8-bit I/O port we use

IN AL, port .
where port is an I/O port number. Similarly, to write to a 8-bit I/O port we use
OUT port,AL ‘

There are three 1/O ports involved here: port 42h for loading the counter,
port 43h that specifies the timer operatlon and port 61h that enables the
timer circuit.

Before loading port 42h with the count, we load port 43h with the
command code B6h; this specifies that the timer will generate square waves
and that the port 42h will be loaded one byte at a time with the low byte
first. The bit positions 0 and 1 in port 61h control the timer and its output.
By setting them to 1, the timer circuit will be enabled.

The sound-generating procedure, BEEP, produces a tone of 1000 Hz
for half a second. The steps are (1) load the counter (I/O port 42h) with 1193,
(2) activate the timer, (3) allow the beep to last for about 500 ms, and (4)
deactivate the timer. Procedure BEEP is shown in program listing
PGM16_3A.ASM.

Program Listing PGM16_3A.ASM

TITLE PGM16_3A: BEEP

;sound generating procedure
EXTRN TIMER_FLAG:BYTE
PUBLIC BEEP

.MODEL SMALL
.CODE
BEEP PROC
;generate beeping sound
PUSH CX ;save CX
;initialize timer ’
MOV AL, 0B6H ;specify mode of operation
ouT 43H, AL swrite to port 43h
;load count
MOV AX,1193 ;count for, 1000 Hz
ouT 42H,AL ;low byte
MOV AL, AH ;high byte

ouT 42K, AL.
;activate speaker .
IN AL, 61H sread control port

MOV AH, AL ;save value in AH
OR AL,11B ;set control bits
ouT 61H, AL ractivate speaker
;500 s delay loop
MOV cX, 9 ;do 9 times
B_1: CMP TIMER_FLAG,1 ;check timer flag
JNE B_1 . ;jnot set, loop back
MoV TIMER_FLAG,0 ;flag set, clear it
LOOP B_I ;repeat for next tick

;turn off tone -
MOV AL, AH ;jreturn old control value to AL

Chapter 16. Color Graphics 349

’ We now write a new ball movement procedure that uses the sound-
generating procedure BEEP. Whenever the ball hits the boundary, procedure
BEEP is called to sound the tone. The new procedures are called
MOVE_BALL_A and CHECK_BOUNDARY_A; both are contained in the pro-
gram hsting PGM16_3B.ASM,

Program Listing PGM16_38.A$M
TITLE PGM16_3B: Ball Movement
jcontains MOVE_BALL_A and CHECK_BOUNDARY_A
EXTRN DISPLAY_BALL:NEAR, BEEP:NEAR
EXTRN TIMER_FLAG:BYTE, VEL_X:WORD, VEL_Y:WORD
PUBLIC MOVE_BALL A
.MODEL SMALL
.CODE
MOVE_BALL_A PROC
;erase ball at current position and dxsplay ball at new
;position .
:input: CX = column
H DX = row
joutput: CX = column
; DX = row
MOV "AL, O ;color O is backgrournd color
CALL DISPLAY_BALL ;erase ball
. ;get new position i
ADD CX, VEL_X
ADD ° DX,VEL_Y
,check boundary
CALL CHECK BOUNDARY _A
;jwait for 1 timer tick ‘
TEST_TIMER_1:° .
CMP TIMER FLAG, 1 ;timer ticked?
JNE TEST_TIMER_1 ;no, keep testing
MOV TIMER FLAG,0 ;yes, clarify

~

.t MoV AL, 3 _ i;white color
~ CALL DISPLAY_ BALL ;show ball
RET

. MOVE_BALL_A ENDP

; ,

CHECK_BOUNDARY_A PROC .

-determxne if ball is outside scretn, if so move it

,back in and change the ball direction

;input: CX = column
H DX = row
joutput: CX = column
; DX = row
,check column value N
cMp €X, 11 ileft of 112
JG Ll /ino, go check right margin
MOV CcX,11 ;yes, set to 11
NEG VEL_X ichange direction
CALL BEEP - ;sound beep
JMp L2) . 590 test row boundary
Li: CMP . CX,299. | ;beyond right margin?
JL L2 o in0, go test row boundary
MOV CX,298 ;set column to 298

NEG VEL_X " - ;change direction

150 16.6 An Interactive Video Garne

CALL BEEP :sound beep

;check row value

L2¢ CMP DX, 11 ;above top matgid?
JG L3 ;no, check bottom margin
MOV DX, 11 ;set to 11
NEG VEL_VY ;change direction
CALL BEEP . . .
JMP DONE ;done

L3: Cme Dx,1¢€8 ;below bottom margin?
JL DONE ;no, done
MOV DX,187 ;yes, set to 187
NEG VEL_Y " ;change direction
CALL BEEP ;sound beep .

DONE:)
RET

CHECK_BOUNDARY_A ENDP

END

16.6.2
Adding a Paddle

Next, lét us add a paddle to the program. The paddle will move up
and down along the left boundary as tlve player presses the up and down
arrow keys. ’

Since the program does not know when a key may be pressed, we
need to write an interrupt procedure for interrupt 9, the keyboard interrupt.
This interrupt procedure differs from the one in Chapter 15 in that it will
access the keyboard 1/0 port directly and obtain the scan code.

’ There are three 1/0 ports to be accessed. When the keyboard gener-
ates an interrupt, bit 5 of the 1/O port 20h is set, and the scan code comes
into port 60h. Port 61h, bit 7, is used to enable the keyboard. Therefore, the
interrupt routine should read the data from port 60h, enable the keyboard
by setting bit 7 in port 61h, and clear bit S of port 20h.

The interrupt procedure is called KEYBOARD INT. When it obtains
a scan code, it first checks to sce if the scan code is a make or break code.
If it finds a make code, it sets the variable KEY_FLAG and puts the make
code in the variable SCAN_CODE. If it finds a break code, the variables are
not changed. Procedure KEYBOARD_INT is in program listing
PGM16_3C.ASM.)

Program Listing PGM16_3C.ASM

TITLE PGM16_3C:Keyboard Interrupt
EXTRN SCAN_CODE:BYTE, KEY FLAG:BYTE
PUBLIC KEYBOARD__INT

.MODEL SMALL

.CODE

KEYBOARD _INT PROC

;keyboard interrupt routine

;isave registers
PUSH Ds

Chapter 16 Color Graphics

";read scan code
;save it
;control port value
;save in AH
- ;set bit for keyboard
“;write ‘back
;get back control value
‘;reset control port
;recover scan code
;save scan code in AH
~stest for break code
goto KEY_O0

clear flags,

SCAN_CODE, AL ;save in variable
iset key flag
;reset interrupt

PUSH AX
;set up DS M
O MOV AX,SEG SCAN_CODE

MOV. DS, AX
sinput scan code

IN AL, 60H.

PUSH AX -

IN AL, 61H

MOV AH, AL °

OR AL, 80H

‘ out 61H,AL’

XCHG AH,AL

ouT €iH, AL

POP AX

MOV AH, AL

TEST AL,80H

JNE "KEY_0 - ;yes,
;make code

MOV

MOV KEY_FLAG, 1
KEY_0:MOV AL, 20H

ouTt 20K, AL
;restore registers

POP AX

POP DS

IRET

KEYBOARD_INT ENDP

’

END

;end "KEYBOARD routine

351

' We now add a paddle in column 11, and use the up and down arrow
-keys to move it. If the ball gets to column 11 and tffe paddle is not in position
to hit the ball, the program terminates. The paddle is made up of 10 pixels;
the initial position is from row 45 to row 54. We use two variables, PAD-

DLE_TOP and PADDLE_BOTTOM, to keep track of its current position.

- We need two procedures: DRAW_PADDLE, to display and erase the
paddle; and MOVE_PADDLE, to move the paddle up and down. Both pro-
cedures are in program listing PGM16_3D.ASM.

Program Listing PGM16_3D.ASM

TITLE PGM16_3D:

PADDLE CONTRCL

;contains MOVE_PADDLE and DRAW_PADDLE .

EXTRN PADDLE_TOP:WORD,
PUBLIC DRAW_PADDLE,
.MODEL SMALL

.CODE
DRAW_PADDLE PROC
;draw paddle-in'column 11
;input: AL contains pixel
[2 (red) for display
;save registers

PUSH CX

PUSH DX

PADDLE_BOTTOM: WORD -
MOVE_PADDLE *

g i
value*”™

and 0 to erase

(green)

352 16.6 An Interactive Video Game

.

MOV AH, OCH ;write pixel ‘tunction

MOV~ CX,11 ;column 11

MOV DX, PADDLE_TOP itop row
DP1: INT 10H

INC DX ;next row

CcMP DX, PADDLE_BOTTOM ;done?

JLE DP1 /nho, repeat
;restore registers

POP DX)

POP cX

RET

DRAW_PADDLE ENDP

;

. MOVE_PADDLE PRQC
imove paddle up or down
sinput: AX = 2 (t> move paddle down 2 pixels)

; = -2 -¢ move paddle up 2 pixels)
MOV BX, AX ;copy to BX

scheck direction
CMP AX,0 . . .
JL up ;neg, move up

;move down, check paddle position
CMRE PADDLE_BOTTOM, 188 ;at bottom?

JGE DONE ;yes, cannot move
JMp UPDATE ;no, update paddle

;move up, check if at top

- UP: CMP PADDLE_TOP, 11 ;at top? .

JLE DONE ’ ;yes, cannot move

;move paddle

UPDATE:

;—erase paddle

' MOV AL,O ;green color

CALL DRAW_PADDLE
;—change paddle position

ADD PADDLE_TOP, BX

ADD PADDLE BOTTOM, BX
;~display paddle at new position

MOV AL, 2 ;i red
CALL DRAW_PADDLE

DONE: RET

MOVE_PADDLE ENDP
END

MOVE_PADDLE will either move the paddle up two pixels or down
two pixels, depending on whether AX is positive or negative. However, if
the paddle is already at the top, it will not move up; and if it is already at
the bottom, it will not move down.

We are now ready to write the main procedure.

Chapter 16 Color.Graphics 353

Program Listing PGM16_3.ASM
" TITLE PGM16_3: PADDLE_BALL
EXTRN SET_DISPLAY_MODE:NEAR, DISPLAY BALL:NEAR
EXTRN MOVE_BALL_A:NEAR, DRAW_PADDLE;:NEAR
EXTRN MOVE_PADDLE : NEAR
EXTRN. KEYBOARD_INT:NEAR, TIMER_TICK:NEAR
EXTRN SETUP_INT:NEAR, KEYBOARb‘INT:NEAR7
PUBLIC . TIMER_FLAG, KEY_FLAG, SCAN_CODE ot
PUBLIC PADDLE_TOP, PADDLE_BOTTOM, VEL_X, VEL_Y
. . -t
.MODEL SMALL
.STACK 100H

.DATA
NEW_TIMER_VEC DW 2,2
OLD_TIMER_VEC DW 2,2
NEW_KEY_VEC =~ DW 2,?
OLD_KEY_VEC DW 2,2
SCAN_CODE DB 0
KEY_FLAG DB 0
TIMER_FLAG DB 0
PADDLE_TOP DW - 45
PADDLE_BOTTOM DW T
VEL_X DW - -6
VEL_Y DW -1

;8can codes .
UP_ARROW = 72 o
DOWN_ARROW = 80)
ESC_KEY = 1

I

.CODE
MAIN PROC
MOV AX, @DATA
MOV~ DS, AX . ;initialize DS

:set graphics mode - .
CALL SET_DISPLAY_ MODE
sdraw paddie ’
* MOV AL,2 | . ;display red paddle
CALL DRAW_PADDLE
~:set up timer interrupt vector
MOV NEW_TIMER VEC,OFFSET TIMER_TICK ;offset
MOV NEW_TIMER_VEC+2,CS © ;segment
MoV AL, 1CH sinterrupt number
LEA DI,OLD_TIMER_VEC
" LEA SI,NEW_TIMER_VEC
* CALL SETUP_INT)
; set Lp keyboard interrupt vector

MOV NEW_XEY_VEC,OFFSET KEYBOARD_INT ;offset
MOV NEW_KEY_VEC*z,CS ; Segment
MOV AL, 9H ;interrupt number

LEA' DI,OLD_KEY_ VEC

‘LER SI,NEW_KEY_VEC

CALL SETUP_INT
;start ball at column = 298, row = 100

»

‘354

16.6 An Interactive Video Game

I N

MOV © CX,298 icolumn
MOV . DX,100 irow
MOV~ AL, 3 ‘7 :white

CALL DISPLAY BALL
;check Key ' flag '
TEST_KEY: -_'

W

cMp KEY FLAG i ~ icheck key flag
JNE_‘ TEST _TIMER ;not set, go check timer fla
MOV ' KEY FLAG,O0 - ;flag set, clear it and chec
CMP SCAN_CODE, ESC_KEY ;Esc Rey?
JNE TK_1' - ino, check arrow keys
JMP DONE ;Esc, terminate
TK_1: CMP SCAN_CODE, UP_ARROW jup arrow?
JNE TK_2 E ;noh,check down arrow
MoV AX, -2 ;yes, move up 2 pixels
CALL MOVE_PADDLE = ;
JMP TEST_TIMER ' ;go check timer flag
"TK_2: CMP SCAN_CODE, DOWN_ARROW ;down arrow?
JNE TEST_TIMER ;no, check timer flag
MoV AX, 2 .;yes, move down 2 pixels
CALL MOVE_PADDLE ;
;check timer flag
TEST_TIMER:
cMp TIMER_FLAG, 1 ;flag set?
JNE TEST_KEY ;no, check key flag
MOV TIMER FLAG,0 ;yes, clear it
CALL MOVE_BALL_A ;move ball to new position
;check if paddle missed ball
CcMmpP CcX,11 ;at column 11?
JNE TEST_KEY ;no, check key flag
CMP DX, PADDLE_TOP .;yes, check paddle
JL cp_1 ;missed, ball above
cMmP DX, PADDLE_BOTTOM ’
JG CpP_1 ;missed, ball below

;paddle hit the ball, delay one tick tlren
;move the ball and redraw paddle

DELAY: CMP TIMER_FLAG, 1 ;timer ticked?

JNE DELAY) \;60,'keep checking

MOV T;MER_ELAC,O . :yes, reset flag

CALL MOVE_BALL_A ‘

MOV AL, 2 . " ;display red paddle

CALL DRAW PADDLE

JIMP TEST KEY | ;check key flag
;paddie missed the 'ball, erase the ball and terminate
cp_ix MOV. 'AL,0 | ! ‘;erase ball

CALL DISPLAY_BALL
;~reset timer ‘interrupt vector

DONt: LEA DI, NEW_ TIMER VEC

"LEA’ SI,OLD_TIMER VEC.
MOV AL,ICH | ‘s
CALL SETUP INT ot
;~reset- keyboard xntexrupr~vector
LEA" DI,NEW_KEY VEC
LEA SI,OLD_KEY_VEC, . | ,
MOV AL, 9H

Chapter 16 Color Graphics 355

CALL SETUP TNT
;read key'
MOV AH, 0
» INT 16H
;reset to text mode

. MOV AH, 0 . - o -.-.3wait for input
.. MOV AL,3
INT 108
sreturn to DOS
e MOV AH, 4CH
<7 INT - 2iH-
MAIN ENDP
END MAIN

- In:the main procedure, we alternate between checking the key tlag and the
_timer flag. If the key flag is set, we check the scan code: (1) Fsc key will
terminate the program, (2) Up arrow Key will move thie paddle up, (3) Down
arrow key will move the paddle down, and (4) all other keys are ignored. 1t
the timer flag is set, we call MOVE_BALL_A to move the ball to a new posi-
tion, and if the ball is at.column 11 but missed the paddle, we terminate
the program.
To terminate the program, we first reset the interrupt vectors and
wait for a key input. When a key is pressed, we reset the screen to text mode
and return to DOS.

Summary

. SEr_eeh elements in graphics mode are called pixels.
D The‘-c'pm‘mon 1BM graphics adaplers are CGA, EGA, and VGA.
"¢ The INT 10h routine handles all graphics operations.

' The CGA has a medium-resotution mode of 320 x 200 and a high-
- resoluuon modc of 640 x'200.

e The FCA h 15 all lhc CGA modes plus a resolution of 640 x 350,

* The VGA has all,the'EGA modes plus a resolution of 640 x 480. It
can also display 256 colors in the 320 x 200 mode. :

[N e

. 'Ammatlon m»olvcs cmsm;, an ob|ccl and displaying it at a'new
locatxon -) o e

‘10 Sound generation can be achievcd by writing to the 1/O ports.

e Interactive video game prog,rammlnb requires trapping the key-
 board interrupt. , . .

356

Glossary

Glossary

analog monitor

APA (all points
addressablc),

background color
bit planes

ECD (cnhanced color
display) monitor

palette

pixcl
scan lines

A monitor that can accept multilevel
color signals

Graphics mode that maps a pixel into o
single dot

Default color of pixels

Memory modules that share the same
memory address

A monitor that can display all EGA modes

A collection of colors that can be dis-
played at the same time

Picture element

Lines on the screen traced by a beam of
electrons

New Instructions

IN

ouT

- .Exercises

“1. Write instructions that will select graphics mode 320 x 200 with

16 colors.

2. Write instructions that will select palette O with white back-

ground for the CGA medium resolution mode.

- Write instructions that will display a 10 x 10 green rectangle with

the upper left-hand corner at column 150 and row 100 on a
white background using CGA medium resolution.

Write instructions that will change a 10 x 10 green rectangle on
white background into a cyan rectangle on a white background.

Programming Exercises

S.

6.

Modify the video game program in the chapter to add a second

" paddle in column 299 so that it becomes a 2-player game.

Modify the video game program in the chapter so that the ball
speed decreases wiren it hits the boundary, but increases when it

is hit by a paddle.

Recursion

Overview - K

A recursive procedure.is a procedure that calls itself. Recursive pro-
cedures are important in high-level languages, but the way the system uses
the stack to implement these procedures is hidden from the programmer. In

-assembly language, the programmer must actually program the stack oper-
ations, so this provides an opportunity 10 see how recursion really works.

. «Because you may have had only limited u\pcucncc with recursion,
sections 17.1-17.2 discuss the underlying ideas. Section 17.3 shows how that
stack can be used to pass data to a procedure; this topic was.also covered in
Chapter 14. In sections 17.4-17.5, we apply this method to implement re-
cursive procedures that call themselves once. The chapter ends with a dis-
cussion of procedures that make multiple recursive calls.

7.1
The Idea of
Recursion

A process is said to be recursive if it is defined in) terms of itsclt.
For example, consider the following definition of a binary trec:

A binary tree is either empty, or consists ot a single element
called the root, and whose remnaining clements are partitioned
into two disjoint subsets (the left and right subtrees), cach of
which is a binary tree,

- Let us apply the definition to show that the followmg tree 1 is
a bmary trec:

358 17.2 Recursive Procedures

/\
/\

Choose A as the root of T. The tree T1, consxsting of B,D,andE, is

the left subtree of A and the tree T2, consisting of €; is the right subtree. We
must show that Tl and 12 are binary trees.

Choose B as the root of T1. The trees T1a consisting of D and Tl
consisting of E are the lett and right subtrees. We must show that T1; and

T1p are binary trees.
Choose D as the root of T1a. The left and right subtrees of 1 are

empty, and since an empty Lree is a binary tree, Tla is a binary tree. For they

same reason, T1p is a binary tree. Because T1a and Tlp are binary trees, |1

must be a binary tree.
Now look at T2. It has a root C whose left and right subtrees are

empty, so it is a binary trec.
Since T1 and 12 have been shown to be binary trees, tree T must

also be a binary tree.
This simple example illustrates the main characteristics of recursive

processes:

1. The main problem (showing that T is a binary tree) breaks down
to simpler problems (showing that T1 and T2 are binary trees),
and each of these problems is solved in exactly the same way as
the main problem,

2. There must be an escape case (empty trecs are bmary trees) that
lets the recursion terminate.

3. Once a subproblem has been solved (11 is shown to be a binary
tree), work procceds on the next step of the original problem
(showing that T2 is a binary tree).

17.2
Recursive Procedures

b
A recursive pr()udure calls itself. As 3 first example, comider the
factorial of a positive integer. 1t may be ‘defined nonrecursively as

FACTORIAL (D) =1
FACTORIAL(N) = Nx (N~ 1) x(N=-2)x ... 2x 1 if N>1

or, since
FACTORIAL(N -)= (N-) x(N=-2)x ... 2x 1
we may wirite the following recursive delinition:

FACTORIAL (1) =) .
FACTORIAL (M) =N x FACTORIAL (N - D ifN>1

Let's rewrite this as an algorithm for a recursive procedure FACTORIAL:

PRLCEDURE FACTURIAL (input: N, output: RESULT)

2: IF N = i

3 THEN

[RESULT = 1
5t ELSE

¢

Chapter 17 Recursion - 359

6 'call FACTORIAL (input: N - 1, output: RESULT)

7 RESULT = N x RESULT

8: END_IF

9: RETURN

In line 7, the value of RI',SULT on the right side is the value returned by the

call to FACTORIAL at line 6. = -
For N = 4, we can trace the actions of the procedure as follows:

call FACTORIAL™(4,RESULT) /* begin first call */
éall'FACTORIAL (3, RESULT) /* begin second call */
¢all FACTORIAL '(2,RESULT) /* begin third call */
céll FKCTORIAL (l,ﬁéSULT) /* begin fourth call */

Rr_SULT = 1 .
RETURN /™ end fourth call */

The fourth call is the escape case. When it is finished, the third call is resumed
at line 7:

RESULT = N x RESULT

On the right side, N = 2 and RESULT is 1, the value computed in
the fourth call. We compute .

RESULT = 2'x 1 =*2

and tlus call ends Thc procedure thcn Jfesuinaes the second call‘at line 7: In -
this call N = 3, so we compute

RESULT = '3 x RESULT = 3 x 2 = 6

which ends this cail. Finally the procedure resumes the first call at line 7. In
this call N = 4, 5o the result-is.

RESULT = 4 "x RESULT = 4 x 6. = 24

and this is the value returned by the procedure.

This procedure has-the propertics of a recursive process that we no-
ticed in the binary tree example. Each call to procedure FACTORIAL works
on a simpler version of the original problein (finding the factorial of a smaller
number), there is an escape case (the factorial of 1) and once a call has been
compleled work continues on the previous call.

- As a second example, consider the problem of finding the largest .
cntry in an array A of N integers. If N = 1, then the largest entry is the only
entry, A[1]. If N > 1, the largest entry is either A[N] or the biggest of the
entries A[1] .. A[N - 1]. Here is an algorithm for a procedure.-

1: PROCEDURE FIND_MAZ (jnput: N, output: MAX)
2: IT N = 1 :
3: THEN T

4 MEX = A{1)

5 ELSE

€: call EIND_MAX(N-1,AX)

7: IF AtW) > MAY ’

a THEN

9: MAX ~ A{N]

19: | FLSE - o

11: MAX "= MAX

12 END_IF

13: RETURN

\
‘In lines 7 and 11, the value MAX on the right side is the value returned by
the call at line 6.

360 17.3 Passing Parameters on the Stack

Let’s trace the procedure for an array A of four entries: 10, S0, 20, 4.

call FIND_MAX (4, MAX) /* first call */
call FIND_MAX(3,MAX) /* second call +/
call FIND_MAX (2, MAX) /* third call */

call FIND_MAX (1, MAX) /* fourth call */

As in the factorial example, the fourth call is the escape case. It returns MAX
= A[1} = 10 and exits.

Now the third call resumes at line 7. Because A[2] (= 50) > MAX (=
10), the value returned from this call is MAX = 50.

Next the second call resumes at line 7. Because A[3] (= 20) < MAX
(= 50), this call also returns MAX = 50.

Finally, we are back in the first call at line 7. Because A[4) (= 4) <
MAX (= 50), this call returns MAX = 50, and this is the value returned to
the calling program by the procedure.

17.3
Passing Parameters
on the Stack

As we will see later, recursive procedures are implemented in assem-
bly language by passing parameters on the stack (section 14.5.3). To see how
this may be accomplished, consider the following simple program. It places
the content of two memory words on the stack, and calls a procedure
ADD_WORDS that returns their sum in AX.

Program Listing PGM17_1.ASM

0 TITLE PGM17_1: ADD WORDS
1 .MODEL SMALL .
2 .STACK 100H

3 .DATA

4: WORD1 DW 2

5 WORD2 DW 5

6 .CODE

7 MAIN PROC

8: MOV AX, GDATA

9: MOV DS, AX

10: PUSH WORD1

11: PUSH WORD2

12: CALL ADD_WORDS
13: MOV AR, 4CH

14: INT 21H

15

16: ADD_WORDS PROC NEAR
17: ;adds two memory words

18: ;stack on entry: return addr. (top), word2, wordl

19: ;output: AX = sum

20: PUSH BP ;save BpP

21: MOV BP, SP

22: MOV AX, [BP+6] ;AX gets WORD1
23: ADD AX, (BP+4] - ;AX has sum

24: POP BP ;restore BP

25: RET [] ;exit

26: ADD_WORDS ENDP .
27:) END MAIN .

Chapter 17 -Recursion 361

After initializing DS, the grogram pushes the contents of WORD1
and WORD?2 on the stack, and calls ADD_WORDS. On entry to the proce-
dure, the stack looks like this:

SP—-=| return_address (fine 1 3)
S (WORD2 content)
2 (WORD1 content)

At lines 20-21, the procedure first saves the original content of BP on the
stack, and sets BP to point to the stack top. The result is :

¢ SP—ef original BP value
return-address
5
2

Now the data can be accessed bty indirect addressing. BP is used for two
reasons: (1) when BP is used in indirect addressing, SS is the assuimed segment
register, and (2) SP itself may not be used in indirect addressing. At line 22,
the effective address of the source in the instruction

MOV AX, [BP+6)

Is the stack top offset plus 6, which is the location of WORID1 content .
Similarly, at line 23 the source in

ADD AX, (BP+4)

_is the location of WORD2 content (5).

After restoring BP to its original value at linc 24, the stack becomes

SP—| return address

i 2

To exit the procedure and restore the stuck to its original condition,
we use
RET 4

‘This causes the return address to be popped into I, and four additional bytes
to be removed from the stack.

174 :
The Activation
Record

Before attempting to code a recursive procedure, one issue must be

" gesolved. The parameters (and local variables, if any) of the procedure are

reinitialized ecach time the procedure is called. In both examples of section
17.2, the procedure is first called with parameter N = 4, then with N = 3,
then with N = 2, then with N = 1. When a call has been completed, the
procedure resumes the previous call at the point it left off. in order to do
0, it must somehow “remember” that point, as well as the values of the
parameters and local variables in that call. These values are known as the
activation record of the call.

To illustrate, suppose we have a procedure that is called once from
the main procedure, and then calls itself twice more. Before initiating the
first call, the main procedure places the initial activation record on the stack
and calls the ‘procedure. The procedure saves BP and sets BP to point to the

362

17.4 The Activation Record

- stack top, as was done in the example of the last section. The stack looks.
like this:

SP and BP —| original BP value \ activation
. return address (in main procedure) record
parameters first call

Using BP to access the parameters and local variables, the procedure
executes its instructions. Before calling itself, it places the activationi record
for the next call on the stack. The return address that the recursive call places
on the stack is that of the next instruction to be done in the procedure. As
the second call begins, the procedure once again saves BP and sets BP to
point to the stack top. The resuit is

SP and BP —-| saved BP vaiue (from first call) activation
return address (in first call) record
parameters and local variables second call
original BP . activation
return address (in main procedure) record
parameters first call

Now, as in the first call, the procedure uses BP to access the data for the
second call. Before initiating the third call, its activation record is placed on
the stack. The third call saves BP and sets it to point to the stack top. The
stack becomes

SP and BP —| saved BP value (from sécond call) activation
return addr (in second call) record
parameters and local variables third call
original BP value (from first call) activation
return addr (in first procedure) record
parameters and local variables second call
original. BP activation
return addr (in main procedure) record
parameters first call

Let’s suppose that the third call is the escape case. The result it com-
putes may be placed in a register or memory location so that it is available
to the second call when the second call resumes. After the third call is com-«
pleted, the second call may be resumed by first-popping BP to restore its
previous value, and executing a return. The return places in IP the address
of the next instruction to be done in the second call. As part of the return,
the third call’s parameters and local variables are popped off the stack and
discarded, as was done in the example in the last section. The stack becomes

SP and BP -.—+] saved BP value {from first call) 7 activation
return addr (in first call) record
parameters and local variables second call
original BP activation
return addr (in main procedure) record
parameters : . second call

- - Now.the.second call-resumes.-It picks up the result of the third call
and executes to completion. When it has finished and stored the result, the¥.

Chapter 17 Recursion: ~ 363

stack is once égain popped into BP, and control returns to the first call. As
before, the second call’s data are discarded. Now the stack looks like this:

SP and BP ..— | original BP value 'l activation
return address {in main procedure) | {record
parameters) first call

When the first call is done, the procedure restores BP to its original
value, and control passes to the main procedure. As before, the pafameters
are discarded. The procedure stores the final result in a place where the main
procedure can pick it up.

17.5
Implementation
of Recursive
Procedures

%

In this section, we show how recursive procedures may be im-
plemented in assembly language.

“Example 17.1 Code the FACTORIAL procedure of section 17.2. Call it
in a program to compute the factorial of 3.

Solution: To make the code easier to follow, the algorithm is repeatéd here:

1: PROCEDURE FACTQRIAL (input: N, output: RESULT)
2: IF N = 1 ’ _

3: ,THEN | _

4: RESULT =1

5: ELSE

6t call FACTOPTAL (input: N - 1, outpur: RESULT)
7: . RESULT = N x RESULT
8: END_IF

'9: RETURN

Program Listing PGM17_2.ASM
‘TITLE PGM17_2: FACTORIAL PROGRAM
.MODEL SMALL '
, -STACK 100H

0:
1:
2:,
-3:. .CODE -
4: MAIN PROC
“5: 3 MOV - AX,3 : IN = 3
6: PUSH RY ;N on stack
7 CALL FRTTCRIAL T JAX has 3 factorial
3: MOV ~H, 4CH
9: INT : 21H ;dos return
10: MAIN ENCP
11: FACTORIAL PROC MERE
“12: ; computes : factorial
13: .; input:stacr on entry - rect. addr.(top), N
14: ;. .outputiX)
_15: _ _ PUSH BP ;save BP
16: MOV Bp, SP) ;BP pts to stacktop
17 e

18: CMP WORD PTR[BP+4],1 ;N = 172_

364 17.5 Implementation of Recursive Procedures

19: JG END_IF ;no, N1
20: ;then : .
21: MOV AX,1 ;result = 1
22: JMP RETURN ;go to return
23: END_IF:
24: MOV CX, [BP+4] ;get. N
25: DEC CX iN-1
26: PUSH CX ;save on stack
4 27: CALL FACTORIAL ;recursive call
28: MUL WORD PTR([BP+4]) ;RESULT = N*RESULT
29: RETURN: ' '
30: POP BP ;restore BP
31: RET 2 ;return and discard N
32: FACTORIAL ENDP

33: END MAIN

The testing program puts 3 on the stack and calls FACTORIAL. At lines 15
and 16 the procedure saves BP and sets BP to point to the stack top. The
stack looks like this:

SP —= | (original) ‘ «—BP (first call
return addr (line 8)
3 (value of N)

Now, at line 18 the current value of N is examined. We must use
CMP WORD PTR [BP+4),1 rather than CMP [BI’+4],1 because the assembler
cannot tell from the source operand 1 whether to code this as a byte or word
instruction.

Because N # I, in lines 24-26 the data for the next call are prepared by
retrieving the current value of N, decrementing it, and saving it on the stack.

At line 27. the second call (N = 2) is made. Once again, at lines 15
and 16, BP is saved and BP is set to point to the stack top. The stack becomes

SP — | BP (first call) +— BP (second call)
Eeturn addr (line 28)

BP (original)
return addr (line 8)
3 ..

Since N is still not 1, the procedure calls itself one more time, and
the stack looks like this: :

SP .~ | BP {second call) +«— BP (third call)
return addr (line 28) .

1

BP (first call)

return addr (line 28)
2

BP (original),
return addr (line 8)
3

. Chapter 17 Recursion 365

Since N is now 1, the recurslon can terminate. At line 21, the pro-
cedure places RESULT = 1 in AX, restores BP to its value in the second call
and rcturns. The RET 2 at line 31 causes the .rcturn address in the second
call (line 28 in the listing) to be placed In IP. RET 2 also causes parameter 1
to be popped off the stack. The stack becomes

SP —— | BP (first call) «~—— BP (second call)
' rzeturn addr (line 28)

BP (original)
return addr (line 8)
3 .

Now execution of the second call continues at line 28. Because the result of
the third call is in AX, the procedure can multiply it by the current value of
N, yielding RESULT =2 x 1 = 2, The new result remains in AX. With this
call complete, BP is restored and the first call resumed at line 28. The stack

is now

return addr (line 8)
3 (value of N)

SP —= | BP (original) J +— BP (first call)

As before, the latest result is multiplied by N, yielding RESULT = 3 x 2 = 6.
Control passes to linc 8 in the main program, with the value of the factorial

in AX,

Example 17.2 Code procedure FINDMAX of section 17.2, and test it In
a program._ ‘

Solution: The algorithm for the procedure is reproduced here:

1: PROCEDURE FIND MAX (input: N, output: MAX)
2: IF N =1

3: THEN

4: MAX = 1

5: ELSE

6 call FIND_MAX(N - 1,MAX)

7 IF A[N] > MAX

8

THEN
9: MAX = A(N])
10: ELSE .
11: MAX =~ MAX /* value returaned by call at line 6 */
12: ENDIF

13: RETURN

366 17.5 Implementation of Recursive Procedures .

Program Listing PGM17_3. ASM
0: TITLE PGM17_3 FIND MAX
.MODEL SMALL

~

2: .STACK 100H~

3: .DATA .

4: A DwW 10,50,20,4

5: .CODE . .

.6 MAIN PROC

7: MOV AX, @DATA

8: MoV DS, AX " ;initialize DS

9: MOV AX, 4 ;no. of elts in array
10: PUSH AX ;parameter on stack
11: CALL FIND_MAX ;retunrs MAX in AX
12: MOV AH, 4CH

13: INT 21H . ;dos exit

14: MAIN ENDP .

15: FIND_MAX PROC NEAR

16: ; finds the largest element in array A of N elements
17: ; input: stack on entry - ret. addr. (top), N
18: ; output: AX largest element

19: PUSH BP ;save BP

20: MOV BP, SP ;BP pts to stacktop
21: jif

22: cMP WORD PTR ([BP+41,1 JN=1?

23: JG =~ ELSE_ ;no, go to set up next call
24: ;then ’

25; MOV AX,A JMAX = A[1)

26: JMP END_TF '

27: ELSE_: T

28: MOV CX, (BRP+4]) - ;get N

29; DEC’ CcX : sN-1

30: PUSH CX ;save on stack

31: CALL FIND_MAX ;returns MAX in’ AX
32: ;if ’ S .

33: MOV ., BX, [BP+4) jget N

34: SHL BX, 1 . ;20

“3%: SuUB BX, 2 ;2 (N-1)

36:. CMP . A[BX], AX SA[N) > MAX?

37: JLE/ END_IF1 ;no, go to return
36: ;then

39: MOV A¥Y.,A[BX] ;yes, set MAX = AI[N}
40: END_IF1:

41 PGP BP ’ ;restore BP

42: RET 2 ; ;return and discard ?
45: FIND_MAX ENDP

44 END MAIN

The stacking of the activation records during the recursive calls in this ex-
ample is similar to that of example 17.1, and is not shown here (see exercises).

At line 32, the procedure begins preparation for comparison of A{N]
with the current value of MAX in AX. Recall from chapter 10 that the offset
location of the Nth element of a word array A is A + 2 x (N - 1). Lines 33-35
put 2 x (N - 1) in BX, so that based mode may be used in the comparisorg,
at line 36. If MAX > A|N}], we can leave it in AX, which means that the FISE
statement at line 11 of the algorithm need not be coded.

v

+

17.6
More Complex

Recursion

Chapter 17° Recursion 367

In the preceding examples, the code for recursive procedures has
involved only one recursive call; for example, the only call that procedure
FACTORIAL (N) makes is to FACTORIAL (N ~ 1). However, it is possible that
the code for a recursive, procedure may involve multiple recursive calls.

As an example, shppose We would like to write a procedure to com-
pute the binomial coefﬁc:e'nts C(n, k). These are the coefficients that appear

in the expansion of (x + »)".

(x + y)= Cn ,0)x"y° + Cl, XYV % Cn, 2232 + .

The expansion takes the form

A+ C, n=1)x"Y" 4 Cn, %y

These coefficients also are used in the construction of Pascal’s Triangle. For

= 4, the triangle is

C2,
C@3.0°

0 Cl.0) - CH,

The coefficients satisfy th

C(0, 0)
C(1,0 C11n

0) C2,1 C2,2)°

C3.1) CB.2) Ca3 3

e following relation:

Cn, my=Cn,0)=1

C(n, k)—C(n-—l k) + C(n —l k- N

1) C4,2) CH4 3

C4, 4)

if n>k>0

This means that in the triangle, the entries along the edges are all 1's,"and
an.interior entry is the sum of the entries in the row above immediately to

the left and right. So the

triangle coniputes to

t1
11
1 21
1 3 31
4 1 4 6 4 1
- Let's apply the preceding definition to compute €3, 2):
C3.2)=C(2,2) + €2, 1)
C2,2)=1
G2, h=Ca,)+ €1, 0
Cc{1,)=1
C(1,0)=1

S0 C2,1)=14+1=
2and €3, 2)=1+2=3

Here is an a-lgo:rith'm for a procedure to compute C(n, k):

-PROCEDUJRE BINOMIAL

IF (K = N) OR (K =.
THEN <
RESULT = 1 '
_ELSE '

CALL BI NOMIAL(W 1,

CALL BINGCMIAL (N-1,

RESULT = RESULZ1
RETURN

(input: N, K;' ourput: RISULT)

0)

K, RESULTl)
'K-1,RESUGLT2)
+ RESULTZ2-

368 17.6 More Complex Recursion

Example 17.3 Code the BINOMIAL procedure and call it in a program
to compute C(3, 2).

Solution::

Program Listing PGM17_4.ASM
0: TITLE PGM17_4: BINOMIAL COEFFICIENTS

1: .MODEL SMALL

2: .STACK 100H

3: .CODE

4: MAIN PROC

5: MOV AX, 2 1 K=2

: PUSH AX

7: MOV AX,3 iN=3

8: PUSH AX . .

9: CALL BINOMIAL iAX = RESULT
10: MOV AH, 4CH :

11: INT 21H :DOS EXIT
12: MAIN ENDP

13: BINOMIAL PROC NEAR

14:) pUSH pe

15: MOV BP, SP

16: MOV AX, (BP+6) ;get K

17: ;if :

18: CMP AX, (BP+4) ‘s K=N?

19: JE TREN ;yes, nonrecursive case
20: cMPp AX, 0 ;K=07?

21: JNE ELSE_ ;no, recursive case
22: THEN:)

23: MOV ax,1 ;RESULT = 1
24: Jup RETURN)

25: ELSE_:

26: ;compute C(N-1,K) .

27: PUSH [{BP+6) ;save K

28: MOV CX, [BP+4] iget N

29: DEC CcX sN-1

30: . PUSH CX ;save N-1

31: CALL BINOMIAL ;RESULT1 in AX
32: PUSH -AX ;save RESULT1

33: ;compute C(N-1,K-1)

34: MOV CX, [BP+6) ;get K
35: . DEC CX C K-l
36: PUSH CX ;save K-1
37: MOV CX, {BP+4] ;get N
38: DEC CX ;N-1
39: PUSH CX ;save N-1
40: CALL BINOMIAL sRESULT2 in AX
. 41: ;compute C(N,K)
42: POP BX ;get RESULT1
43: ADD AX, BX ;RESULT = RESULT1 + RESULT2
44: RETURN:
45: ' pop BP ;restore BP
46: RET 4 ;return and discard N and K
47: BINOMIAL' ENDP

48: : END MAIN

Chapter 17 Recursion 369

Procedure BINOMIAL differs from the procedures of examples 17.1 and 17.2
in the following wayss:

1.

There are two escape cases, k = n or k = 0; in both cases, the call
returns 1 in AX (line 23).

In the general case, computation of C(n, k) involves two recursive
calls, to compute C(nn - 1, k) and C(n -1, k - 1),

All calls to BINOMIAL return the result in AX. After C(in - 1, k) is

computed (line 31), the result (RESULT1 in the algorithm) is pushed ont..
the stack (line 32). At line 40, C(n - 1, k - 1) is computed and the result
(RESULT2 in the algorithm) will be in AX. At lines 42—-43, RESULT! is poppcd
into BX and added to RESULT2, so that AX will contain C(n, k) = C(n - |,

k)+C(n—l,k—1)_

To completely understand how procedure BINOMIAL works, you are

encouraged to trace the effect of the procedure on the stack, as was done in

example 17.1.

Surhmary

Recursive problem solving has the following characteristics: (1)
The main problem breaks down to simpler problems, each of
which is solved in th¢ same way as the main problem; (2) there is
a nonrecursive escape case; and (3) once a subproblem has been
solved, work proceeds to the next step of the original problem.

In assembly language, recursive procedures are implemented as
follows: The calling program places the activation record for the
first call on the stack and calls the procedure. The procedure uses
BP to access the data it needs from the stack. Belore initiating a
recursive call, a procedure places the activation record for the call
on the stack and calls itself. When a call is completed, BP is re-
stored, the return address popped into 1P, and the data for the
completed call popped off the stack.

The code for a procedure may involve more than one recursive
call. Intermediate resuits may be saved on the stack, and retrieved
when the original call resumes.

Glossary ')

activation record

recursive process

Values of the parameters, local variables,
and return addiess of a procedure call

A process that is defined in terms of itselt

370 Exercises

Exercises

1.

Wirite a recursive definition of a”, where 1 is a nonnegative integer. -

2. Ackermann’s function is defined as follows for nonnegative inte-

gers m and n:
AO, n)=n+1
A(m,0)=A(m~1,1)
Aim, m)=A(m-1, Am,n-1)) if m’,’n =0

Use the definition to show that A(2,2) = 7.

Trace the steps in example 17.2 (PGM17_3.ASM) and show the

stack

a. At line 20 in the initial (first) call to FIND_MAX.

b. At line 20 in the second call to FIND_MAX.

¢. At line 20 in the thitd call to FIND_MAX.

d. At line 20 in the fourth call to FIND MAX. This is the escape
case. '

e. Atline 42 in the completion of the third call to FIND_MAX
(after RET 2 has been executed). Also give the contents of AX.

f. At line 42 in the completion of the second call to FIND_MAX
(after RET 2 has been executed). Also give the contents of AX.

g. At line 42 in the completion of the first call to FIND_MAX (af-
ter RET 2 has been executed). Also give the conients of AX.
This is the value returned by the procedure.

Programming Fxercises

4.

Write a recursive assembly language procedure to compute the
suin of the elements of a word array. Write a program to test your
procedure on a four-element array.
The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 5§5,... may be
defined recursively as follows:

FO)= Fi)=1

Fuy= Fm-1)+Fn-2) ifn>1

Write a recursive assembly language procedure to compute F(n),
and call it in a testing program to compute F(7).

18

Advanced

Arithmetic

Overview

. Programs ‘often must deal with data that are bigger than 16 bits, or
contain fractions, or have special encoding. In the [irst threc sections of this.
chapter, we discuss arithmetic operations on double-precision numbers, BCD
(binary-coded decimal) mumbers, and floating-point numbers. In section 18.4, we
discuss the operation of the 8087 numeric coprocessor. :

18.1 N
Double-Precision
Numbers

' We have shown that numbers stored-in the 8086-based computer
c.m be 8 or 16 bits. But even for 16-bit numbers, the range is limited to 0
1065535 for unsigned numbers and -32768 to +32767 for signed numbers.
To éxtend this range, a common téchnique is to use 2 words for each number.

Such numbers are called douible-precision numbcrs and the range here

is 0 to 22 1 or 4,294,967,295 for unsignéd and -2,147,483,648 to
+2,147,483,647 for signed numbers. -

A double-precision number may occupy two registers er two memory
words. For example, -if a 32-bit number is stored in the two memory words -
A and A+2, writlen A+2:A,-then the upper 16 bits are in A+2 and the lower
16 bits are in A.If the number is signed, then the msb of A+2 is the sign
bit. Negative ntumbers are represented in two’s complement form.

-Since the 8086/8088 can only operate on 8- or 16-bit numbers, op-
erations on double-precision numbers must be emulated by software. In sec-
tion 18.4, we show how the 8087 coprocessor can be used to do
double-precision arithmetic.

371

372 18.1 Double-Precision Numbers

18.1.1

Double-Precision
Addition, Subtraction,

and Nega tion

To add or subtract two 32-bit numbers, we first add or subtract the
lower 16 bits and then add or subtract the higher 16 bits. However, the
answer would be incorrect if the first addition or subtraction generates a

carry or borrow.
One way to hand!e this problem is to use instructions to test the flags

and adjust the result. A better method is to use two new instructions provided
by the 8086. The instruction ADC (add with carry) adds the source operand
and CF to the destination, and the instruction SBB (subtract with borrow)
subtracts the source operand and CF from the destination. The syntax is

ADC destination, source
SBB destination, source

For our first example we’ll add two 32-bit numbers.

Example 18.1 Write instructions to add the 32-bit number in A+2:A to
the number in B+2:B. :

Solution: We have to move the first number to registers before the
addition.

MOV AX, A ;AX gets lower 16 bits of A
MOV DX,A+2 ;DX gets upper 16 bits of A
ADD B,AX ;add the lower 16 bits to B
ADC DB+2,DX ;add DX and CF to B+2

While the 32-bit sum is stored in B+2:B, the flags may not be set cor-
rectly. Specifically, the ZF and the PF, which depend on both values of
B+2 and B, are sct by the value in B+2 only. When it is important to set
the flags correctly, we can use additional instructions.

The procedure DADD in program listing PGM18_1.ASM performs a
double-precision add and leaves the flags in the same state as if the processor
had a 32-bit add instruction. We assumec the two numbers are in DX:AX and
CX:BX, and the result is returned in DX:AX.

Program Listing PGM18_1.ASM
;Procedure for double precision addition with 2ZF and PF

;adjust

DADD PROC

;input : CX:BX = source operand

; DX:AX = destinaticn operand

;output: DX:AX = sum
;save register SI

PUSH SI ;81 is needed in the procedure
;to store flays

ADD AY, BX ;add lower 16 bits .
ADC .DX,CX ;add upper 16 bits with carry
PUSKHF isave the flags on the stack
pop 51 ;put flags in Si

;test for zero
JNE CHECK_PF ;1f DX 1s not zerc then ZF

;is OK, go check PF
TEST AX,OFrFrH ;DX = 0, check if AX = 07

L

Chapter 18 Advanced Arithmetic 373

JE CHECK_PF ;yes, 2ZF is OK :)
AND S1, OFFBFH ;AX not zero, clear ZF bit in SI .
;check, PF - - . - o
CHECK_PF :
OR -SI,l100B :set SI for even pari:y
TEST AX, OFF% ;test AL for parity =
.JP° RESTORE | ;AL has even parity, PF . bit in
;SI is OK ’ ", .
XOR SI,100B ;AL has odd parity, negate PF
x ;bit in SI
RESTORE: * «. - s
PUSH SI . ;place new flags on stack
POPF ' +. ;update FLAGS register
;restore SI ' '
POP SI
: RET . .
DADD ENDP e ’ .

e

The SI register is used to manipulate the flag bits. We copy the flags
into SI by pushing the FLAGS register and then popping to Sl because the
contents of the FLAGS register cannot be moved to Sl directly. To adjust Z[F, we
examine both DX and AX, and for PF we examine Al; then we copy Sl to the
FLAGS register, again using the stack. Use the INCLUDE directive to include the
file PGM18_1.ASM in your program if you want to use procedure DADD.

To obtain the negation of a double-precision number, we recall that
the two's complement of a number is formed by adding a 1 to its onc’s
complement.

Example 18.2 Write instructions to form the negation of A+2:A.

Solution: We first form the one’s complement hy using the NOT in-

struction, and then add a 1. .

NOT A+2 Lione’s cemplenent

NOT A . . ione’'s conplement

INC A ; add 1 ’

ADC 7s+2, oo) ,take care of possible f‘n'ry

- v
. For subtraction, a;,am we subtract the low 16 bits flrst then subtract
the high-order words together with any borrow that might ,l)e gencrated. -

Example 18.3 Write instructions to subtract the 32-bit. number in. .

JA+2:A from B+2:B3.

" Solution: '

MOV~ AX,A . . AR gets i lower 16 Litz of A
MOV DX;2+2 ;OX gots upper 16 bits of »
SUE B8,AX ;ountract the lower 1€ bitls
$8B R+2,CX ;i subtract DA and CI‘ frg”‘\ Brz

~To set the flags correctly, we can use the same lcdlmque as in the case
-foraddition; we will leave it as an exercise.

|

1

l

374 18.2 Binary-Coded Decimal Numbers

18.1.2
Double-Precision
Multiplication and
Division

Double-precision multiplication and division by powers of 2 can be
achieved by using the shitt operations, as was done in Chapter 7. To multiply
by 2, we perform a left shift. To divide by 2 we perform a right shift.

Example 18.4 Write instructions to perform a left shift operation on
A+Z:A.

Solution: We start with a left shift on the low-order word, resulting in,

" the msh being shifted into CF. Next, an RCL. shifts the CF into the high-

order word. The instructions are

SHL A1 :low-order worg shifted
BCL Av+2,1 ishift CF intc high-order word

Again, the OF, ZF, and the PF may be set incorrectly.
The next example shows multiplication by 210,

Example 18.5 Write instructions to perform 10 left shifts on A+2:A.

Solution: One may be tempted to place 10 in CL and use CL as the -
count in the shift operation. However, this causes 9 bits in the number to
be lost. In multiple-precision shifts, we must do one shift at a time. The
CX register may be used as a counter in a loop.

MOV CX,10 .:initialize counte:

1 ShT AL :shifr low-order word N
RCL A+2,1 ;shift CF intc high-oYosr word
Logp L1 ;repeat if count is not O

The other shift and rotate operations are lett as exercises.

When the multiplier is not a power of 2, we can simulate a multi-
plication operation with a series of additions. For example, to multiply two
double-precision numbers M and N, we can forimn the product by adding the
number M N times. A more efficient way to do multiplication and division
of multiple precision numbers is to use the 8087 numeric processor instrud®
tions covered in section 18.4.

18.2
Binary-Coded
Pecimal Numbers

The BCD (binary-codcd decimal) number system uses tour hits
to vode ecach decimal digit, from 0000 to 1001. The combinations 1010 to
1111 are illegal in BCD. For example, the BCD representation of the decimal
number 913 is 1001 0001 0011. The reason for using BCD numbers is that
the conversion between decimal and BCD is relatively simple. In section
18.4, we give a procedure for conversion between decimal and BCD.

. As we saw in Chapter 9. multiplication and division are needed to
do decimal I/O. These are notonously slow operations. For some business
programs that pertorm a lot of 1/O and only do simple calculations, mych
time can be saved if numbers are stored internally in BCD format. Neediess

Chapter 18 Advanced Arithmetic 375

to say, the processor must make it easy for programs to do BCD arithmetic

if the savings are to be reahzed

We first look at' the two ways of storing BCD numbers in memory.

18.2.1 :
Packed and
Unpacked BCD

1 .
®

Because only four bits are needed to represent a BCD djgit, two digits
can be placed in a byte. This is known as packed BCD form. In unpacked
BCD form, only one digit is contained in a byte. The 8086 has addition
and subtfaction instructions to perform with both forms, but for multipli-
cation and division, the digits must be unpacked.

Example 18 6 Give the binary, packed BCD, and unpacked BCD repre
sentations of the decimal number 59.

Solution: 59 = 3Bh = 00111011, which is the binary representation. Be-
cause 5 = 0101-and 9 = 1001, the packed BCD representation is
01011001. The unpacked BCD representation is 00000101 00001001.

In the following sections, we cover the instructions needed to do

arithmetic on unpacked BCD numbers.

18.2.2
BCD Addition and

the AAA Instruction

In BCD operations, we do one digit at a time. It is possible to add
two BCD digits and generate a non-BCD result. For example, suppose we add
BL, which has 7, to AL, which has 6. The stm of 13 in AL is no longer a
valid BCD digit. To adjust, we subtract 10 from AL and place a 1 in AH; then
AX will contain the correct sum.

AH 000060700 AL 00000110

RL + 00000111)
AL 00001101 ;not a BCD digit
+ 1 - 00001010 ;adjust by subtracting a 10d
—_— o - ;from AL and adding a 1 to AH
BH 00000001 AL 00000011 sresult is 1 in AH and 3 in AL

We can get the same result by adding 6 to AL and then clearing the ,high
nibble (bits 4-7) of AL. Because the value 13 in AL is greater than the correct
result by 10, adding a 6 will make it too large by 16; clearing the high nibble
has the effect of subtracting 16.

BH 00000000 AL 00001101 not a BCD digit
+ 1 + 00000110 .adjust by adding 6 to AL
—— - ;and 1 to AH

AH 00060001 AL 00010011 :and cleanng the high nibbie

"' AH 00000001 AL- - 00000011; s ;of AL

376

18.2 Binary-Coded Decimal Numbers

The AAA Instruction

The 8086 does not have a BCD addition instruction, but it does have
an instruction that performs the preceding adjustments: AAA (ASCII adjust
for addition) instruction.

AAA has no operand (AL is assumed to be the operand). It is used
after an add operation to adjust the BCD value in AL. It checks the low nibble
of AL and the AF (auxiliary flag). If the low nibble of AL is greater than 9 or
the AF is set, then a 6 is added to AL, the high nibble of AL is cleared, and
a 1 is added to AH.

Both AF and CF are set if the adjustment is made. Other flags are
undeiined.

It is also possible to add two ASCIl digits and use AAA to adjust the
result to obtain BCD digits. This allows a program to input ASCII digits, add
them, and storc the result in BCD format. For example, suppose Al contains
36h (ASCII 6) and BL. contains 37h (ASCII 7). We add Bl to AL and then use
AAA to adjust the result.

AH 000£0000 AL = 00110110
BL + 00110111
AH 00000000 AL 01101101 - -;low nibble not a BCD digit
+ 1 + 00000110 .adjust by adding 6 to AL
R —_— ;and adding 1 to AH
Ly 00000001 AL 01110011 ;:and clearing the high nibble
AH 00000001 AL 00000011 ;of AL

As another example, suppose AL is 3%h (ASCII 9) and BL is 37h (ASCH 7).

Al GO0GOGOo0 AL 30111001
’ BL + 00110111
AR 0000000 AL 01110000 ;low nibble is a BCD digit
;but AF is sct
- 1 + 00000110 ;adjust by adding 6 to AL
— —_— ,and 1 1o AH
Al 30005001 AL 01110110 ;and clearing the hlgh nibble
AH GCooco0L AL 00000110 ‘of AL

Examplc 18.7 Write instructions to perform decimal addition on the
unpacked BCD numbers in BL and AL.

Solution: The first operation is to clear AH, then we add and adjust the

result.

SV RH, D ;prepare for possikbls ca:cry
ADD RL,BL ;binary additicrn

AAA ;BCD adiust, AX containg sum

Example 18.8 Write instructions to add the two-digit BCD number in
bytes B+1:B to the one contained in A+1:A. Assume the result is only two

digits.

Chapter 18 Advanced Arithmetic 377

Solution: We add the low digit before the high digit.

MOV AH,0 - ;prepare for possible carry

MOV AL,A ;load BCD digit

ADD AL,B ibinary additicn

AAA . ;BCD adjust, AX contains sum

MOV A,AL . istore digit

MOV AL, AH sput carry in AL

ADD AL, A+l ;add‘ high digit of A, assume no
;adjustment is needed :

aoD’ Al,B+1 ;add high digit of B, assume¢ no
sadjustment 1is needed

MOV A41,AL ;store high digit

Multiple-digit addition is given as an exercise.

1872'3
BCD Subtraction and
the AAS Instruction

BCD subtraction is again performed one digit at a time. When one
BCD digit is subtracted from another, a borrow nay result. For example,
suppose we subtract 7 from 26; we place 7 in BL, 2 in AH, and 6 in AL. After
subtracting BL from AL, the result in AL is incorrect. The adjustment is to
subtract 6 from AL, clear the high nibble, and subtract 1 from AH. This has
the same effect as borrowing from AH and adding 10 1o AL.

AH 00000010 - AL 00000110
. BL - 00000111
AH 00000010 AL . 11111111 ;not a BCD digit
- 1 '~ 00000110 ;adjust by subtracting 6

" AH 00000001 AL 11111001 .from AL and 1 from AH,

AH 00000001 AL 00001001 .clear high nibble of AL and
sresult in AH:AL is 19

The AAS Instruction

The AAS (ASCII adjust for subtraction) instruction performs BCD
subtraction adjustment on the AL register. If the low nibble of AL is greater-
than 9 (low nibble of AL contains an invalid BCD number) or if the Al is
set, AAS will subtract 6 from AL, clcar the high nibble of AL, and subtract 1

from AH.

Example 18.9 Writc instructions to subtract the two-digit BCD number
in bytes B+1:B from the one contained in A+1:A. Assume the number in

A+1:A is larger.

Solution: We subtract the Jow digit before the high digit.
i Lt

MCV AH, A4l : ;load high BCL Jigit of A

v

MOV AL,A ;load low digit of A
sSUB AL,B : ;subtract liow digit of B8

AAS sadjust for borrow

378 18.2 Binary-Coded Decimal Numbers

SUB 'AH,B+1 ;subtract high digit of B~
MOV A+l1,AH ;store 'high. digit
MOV A,AL ;store low digit

In subracting the high digits, we were able to use the AH register because.
we assumed that no adjustment was needed; otherwise AL should be used
as the result adjusted with AAS. For subtraction of three-digit numbers,
and again start from the lowest digit to the highest. Three AAS adjust-
ments are needed. The details are left as an exercise.

18.24
BCD Multiplication and
the AAM Instruction

In this section, we show only single digit BCD multiplication. In.
section 18.4, we show how the 8087 can be used to perform multiple-digit
BCD multiplication. Two BCD digits can be multiplied to produce a one- ar¥
two-digit product. We put the multiplicand in AL and the multiplier in a
register or memory byte. After BCD multlpllcauon, AX contains the BCD
product.

To multiply 8 by 9, for example, we could put 8 in AL and 9 in BL.
After doing the steps in BCD multlphcatlon the registers AH:AL contain the
product 07 02.

The first step in BCD multnphcatlon is to multiply the digits by or-
dinary binary multiplication. The binary product will be in AL. The second
step is to convert the binary product to its BCD equivalent in AX. |

With 8 in AL and 9 in BL, to do the first step we execute MUL BL.
It puts 0048h = 72 in AX. This needs to be adjusted so that AH contains 07
and AL contains 02. .

The AAM Instruction

The AAM (ASCII adjust for multiply) instruction performs the sec-
ond step. It civides the contents of AL by 10. The quotient, corresponding
to the ten’s digit (7, in this example), is placed in AH; the remainder, corre-
sponding to the unit's (2, in the example), is placed in AL.

In summary, to multiply the BCD digits in AL and BL, and put the
BCD product in AX, cxecute
MUL BL ;B-bit mu.tiplication
BAY ;BCD adjust, result in &X

18.2.5
BCD Division and .
the AAD Instruction

In this scction, we show the division of a two digit BCD number by
a single digit BCD number. The quotient is stored as a two digit BCD number
(the feading digit may be 0). We put the dividend in AX and the divisor in
a register or memory byte. After the BCD division AX will contain the BCD
digits of the quotient.

For cxample, suppose we want to divide 97 by 5. Before division,

AH:AL contains 09 07, The divisor S could be put in BL. Since the quotient

is 19, after BCD division, AH:AL = 01 09.
There are three steps in BCD division:

Chapter. 18 Advanced Arithmetic 379

1. Convert.the dividend in AX from two BCD digits to their binary
equivalent,

2. Do ordinary binary division. This puts the (binary) quotient in

‘AL and the remainder in AH.

3. Convert the binary quotient in AL to its two-digit BCD equiva-
tent in AX.

The AAD Instruction
The instruction AAD (ASCH adjust for division) does step 1. It mul-

“tiplies AH by 10, adds the product to AL, then clears AH. Fus AH:AL = (09

07 multiplication of AH by 10 yields 90 = 5Ah, and adding this to the 7 in
AL puts 61h = 01100001 in AL. ’

If the divisor is in BL, step 2 is done by executing DIV BL. AL gcts
the quotient, 13h = 19, and AH gets the remainder 02h.

Step 3 is done b) cxecuting AAM. It converts the 13hin AL ta O]
09 in AH:AL.

In suihmary, to divide the two BCD digits in AX by the BCD dinit
in BL, execute

LAD ;onvert BCD dividend in AX to blnax,
D1V BIL - :do binary division e .
AAM 7) ;AX nas BCD quotient

18.3

s
:

Floating-Point . .

Numbers

By usm;, floating-point numbers we can represent values that are

'very large and fractions that are very small in a unitorm fashion. Before we

look at the floating-point representation, we have to see how decimal frag-

tions can be converled into binary.

.18.3.1
Converting Dec:mal
Fractions mto Binarv

Supposc the decimal fraction 0.0,02 ... Dy has a binary represen-
tation 0.B152 . .. Bm. The bit By is equat to the integer part of the product
0.D\D; ... Dy x 2. This is because if we multiply the binary representation

"by 2 we obtain Bi.Bz. .. B ds the two products must be equal, so must

their integer parts. If we muluply the fractional part of the previous product
hy 2, the integer part of the result will be B2, We can repeat this process until
B is obtained. Here is the algorithm:

Algorithm to convert a decimal fraction to an M digit binary fraction

Let’ ¥ contain the tecimal fraction

for i"= 1 step 1 until m do
Y = X x 2

¥ = fractional part of ¥
B, = inieqer parc cof Y

Now let's look at some examples.

|

380 183 Floating-Point Numbers

Example 18.10 Convert the decimal fraction 0.75 to binary.

Solution: Step 1, X =0.75, Y = 0.75 x 2 = 1.5, 50 Bi is O. Step 2, the new
value of X is 0.5, 50 Y =0.5 x 2 = 1.0, and Bz is 1. Since the new fractioqal
part is O, we are done. Thus, the binary representation of 0.75 is 0.11.

Examplc 18.11 Convert the decimal number 4.9 into binary.

Solution: We do this in two parts. First we convert the integer part into
binary and get 100b. Next we convert the fractional part: Step 1, X = 0.9,
YV=09x%x2=18,s0B1is1. Step2,X=08,Y=08x2=1.6 50B2is1.
Step 3, X=06,Y=06x2=1250B3is1.S5tep4, X=02, V=02x2=
04,50B3is0.Step 5, X =04, Y =04 x2= .8, 50 Bs is 0. At this point
the new value for X is again 0.8, we can expect the computation to cycle.’
So the binary representation for 4.9 is 100.1110011001100. . ..

18.3.2
Floating-Point
Representation

In the floating-point representation, cach number is represented in
two parts: a mantissa, which contains the leading significant bits in a num-
ber, and an expounent, which is used to adjust the position of the binary
point. For example, the number 2.5 in binary is 10.1b, and its floating-point
representation has a mantissa of 1. 01 and an exponent of 1. This is because
10.1b can be written as-1.01 x 2", For numbers ditferent from zero, the
mantissa is stored as a value that is greater than or equal to 1 and less than
2. Such a mantissa is said to be nonmdalized. Some tloating-point representa-
tions do not store the integer part. Negative numbers are not complemented;
they arc stored in signed-magnitude format.

For numbers simaller than 1, if we normalize the mannsxa the expo-
nent will be negative. For example, the number 0.0001b js 1 x 24 . Negative
exponents are not represented as signed numbers. Instead, a number called
the bias is added to the exponent to create a positive number. For example,
it we use cight bits for the exponent, then the number (2° -~ 1) or 127 is
chosen as the bias. To represent the number 0.0001b, we have a mantissa of
1.0 and an exponcent of -4, After adding the bias of 127, we get 123 or
01111101b. Figure 18.1 shows the'layout of a 32-bit floating-point represen-
tation. It starts with a sign bit, followed by an 8-bit exponent, and a 23-bit]
mantissa. We'll give examples in section 18.4.1.

18.3.3
Floating-Point
Operations

To perform most arithmetic operations on floating-point numbers,
the exponent and the mantissu must be first extracted, and then different
operations are performed on them. For example, to multiply two real numbers

Figure 18.1 Floating-Point
Representation

3130 322 Q

| S ExponemJ Mantissa

Chapter 18 Advanced Arithmetic - 381

we have to add.the exponents and multiply the mantissa; then the result is
normalized and stored. However, if two real numbers are to be added, the
number with the sinaller exponent is shifted to the right so as to adjust the
exponent to that of the other number; then the two mantissas are added
and the result normalized. _

: Needless to say, all these operations are time consuming if emulated
by software. The floating-point operations can be carried out much faster by
using a specially designed circuit chip.

18.4

The 8087 Numeric

Processor :

The 8087 chip is designed to perform fast numeric operations for an

~ 8088- or 8086-based system. It can operate on multiple-precision, BCD, and

floating-point data.

18.4.1
Data Types

The 8087 supports three signed integer formats: word integer (16
bits), short integer (32 bits), and long integer (64 bits). »

The 8087 supports a 10-byte packed BCD format which consists of
a sign byte, followed by 9 bytes which contain 18 packed BCD digits; a
positive sign is represented by Oh and a negative sign by 80h.

There are three floating-point formats:

. Short real—Four data bytes with an 8-bit exponent and a 24-bit
~ mantissa. The integer part is not stored.
Long red?—Eight data bytes, with an 11-bit exponent and a 53-bit
. mantissa. Again, the integer part is not stored.
Temporary real--Ten data bytes, with a 15-bit exponent and a 64-bit
mantissa. All mantissa bits, including the integer part, are stored.

Figure 18.2 shows the data types of the 8087: We give some exainples.

‘Examl')l.c 18.12 Represent the' number ~12345 as an 8087 packed
" BCD number. ’

Solution: For negative BCD numbers, the sign byte is 80h. There are a
total ‘of 18 BCD digits. Thus the number is 80000000000000012345h.

Example 18.13 Represent the number 4.9 as an 8087 short real.

Solution: From example 18.11, the binary representation for 4.9 is
100.1110011001100. . . . After normalization, the 24-bit mantissa is
1.0011100110011001100110, and the exponent is 2. Adding the bias 127
to 2, we get 129 or 10000001b. The integer part is not stored, so the num-
ber is 0 10000001 00111001100110011001100 or 409CCCCCh.

Exumplc;‘ls'.l‘l Represent the number -0.75 as an 8087 short real.

382 18.4 The 8087 Numeric Processor

} vata Range |Precision Most Significant Byte . .
|| _rommats 7 op o7 o a7 o o op o a7 o | |
r—Wu'd integer 10° | 16 Bits EE Two's Complément - .
Short integer 109 { 328its [l Ip] Two's Complement
Long integer 108 | 64 Bits [lg, ;o] Compllrvr:g\st
Packed BCD 10'¢ (18 Digits|{S[Dy,Dy6] } {040}
| Short Real 10:38 | 2aBis [S[E, EofF, F13] Fo Implicit
IrL(mg Real 104398 | 538its [S[Erg - EofFy " Fgy| Fo Implicit
t}or‘:p‘orary Real|1074932] 64 Bits | S{E.q Tojfo ’ ! Fkﬂ

Integyer: |

Keab { 1)M2E-0m)(FyFy..)
bias = 127 for Short Heal
1023 for Long Real

Packed BCD: (-1)%(D,;...00)

16383 for Temp Real

Figure 18.2 8087 Data Type;

Solution: From example 18.12, the binary representation for 0.75 is
0.11b, so -7.5 is 0.11b. The normalized mantissa is 1.1, and the expo-
nent is -1. Adding the bias 127 to -1, we get 126 or 01111110b. The inte-
ger part is not stored, so the number is

1 01111110 10000000000000000000000 or BF400000h.

18.4.2
8087 Registers

The 8087 has eight 80-bit data registers, and they function as a stack.
Data may be pushed or popped from the stack. The top ot the stack is ad-
dressed as ST or ST(0). The register directly beneath tiie top is addressed as
ST(1). In general, the ith register in the stack is addressed as ST(i), where’i
must be a constant.

‘The data stored in these registers are in temporary real format. Mem-
ory data in other formats may be loaded onto the stack. When that happens,
the data are converted into temporary real. Similarly, when storing data into
memory, the temporary real data are converted to other data formats spec-
ificd in the store instructions.

18.4.3
Instructions

The instructions for the 8087 include add, subtract, multiply, divide,
-compare, load, store, square root, tangent, and exponentiation. In doing a
complex floating-point operation, the 8087 can be 100 times faster than an
8086 using an emulation pgbgram. 7

The coordination between the 8087 and the 8086 is like this. The
8086 is responsible for fetching instructions from memory. The 8087 monitors

Chapter 18 Advanced Arithmetic 383

" this instruction stream but does not execute any instructions until it finds
an 8087 instruction. An 8087 instruction is ignored by the 8086, except
-~ when it contains a memory operand. In that case, the 8086 would access

the operand and place it on the data bus; this is how the 8087 gains access
~ to memory locations. .

. In this section, we’ll show sxmple examples on the operations of
load, store, add, subtract, multiply, and divide. Appendix F contains more
information on these instructions and in the following sections we'll give
some program examples.

Load and Store *

. ~ The load instructions load a source operand onto the top of the 8087
stack. There are three load instructions: FLD (load real), FILD (integer load), o
and FBLD (packed B(;D load). The syntax is

‘FLD source
FILD source - o
FBLD source

where source is a memory location. ‘

The type of the memory data is taken from the declared data type.
For example, to load a8 word integer stored in the memory word NUMBER,
we write the instruction FILD NUMBER. If the variable DNUM is defined by
DD (Dcfine Doubleword), then the instruction FILD DNUM loads a short
integer. The instruction FLD can also be used to load an 8087 register to the
top of the stack. For example, FLD ST(3).

Once a number is loaded onto the 8087 stack, we can convert it into
any data type by simply storing it back into memory. This is a simple way of
using the 8087 to perform type conversion. Let’s look at the store instructions.

When storing the top of the stack to memory, the stack may or may
not be popped. The instructions FST (store real) and FIST (integer store) do
not pop the stack, while the instructions FSTP (store real and pop), FISTP
(integer store and pop), and FBSTP (packed BCD store and pop) will pop
~ the stack after the store operation. The syntax is)

FST - destination
FIST destination
FSTP destination
FI1STP destination
FBSTP destination

where destination is a memory location. The stored data type depends on
the declared size of the memory operand.

Example 18.18 Write instructions to convert the short integer stored in
the doubleword variable DNUM into a long real and store it in the
quadword variable QNUM.

Solution: We use the load integer and store real instructions.
FILD DNUM . :load _shott integer
FSTP QNUM. ;store long real and pop stack

384 18.4 The 8087 Numeric Processor

Add, Subtract, Multiply, and Divide

We can add, subtract, multiply, and divide a memory operand or an
8087 register with the top of the 8087 stack. The instructions for real oper-
ands are FADD (add real), FSUB (subtract real), FMUL (multiply real), and
FDIV (divide real). Each opcode can take zero, one, or two operands. An
instruction with no operands assumes ST(0) as the source and ST(1) as the
destination; the instruction also pops the stack. For example, FADD (with
no operands) adds ST(0) to ST(1) and pops the stack.

In an instruction with one operand, the operand specifies a memory
location as the source; the destination. is assumed to be ST(0). For example,
to subtract a short real in the double word variable DWORD from ST (0) we
write FSUB DWORD.

A two operand instruction specifies ST(0) as one operand and Sl'(l)
as the other operand. The stack is not popped. For example, the instruction
FMUL ST(1), ST(0) multiplies ST(0) into ST(1); and FDIV ST(0),ST(2) divides
ST(2) into ST(0). The syntax is

FADD [fdestination, Jsource]
FSUB {{destination,)source]
¥MUL [[destination, source]
FMUL [({destination, jsource)
FD1V. [[destination, | source]

where.items in square brackets are optional.

There are also instructions for integer opcrands They are FIADD
(integer add), FISUB (integer subtract), FIMUL (integer multiply), and
FIDIV (integer dividé). The syntax is

FIADD source
FISUB source
FIMUL source

_FIDIV source

Example 18.16 Write instructions to add the short reals stored in the
variables NUM1 and NUM2, and store the sum in NUM3.

Solution: We load the first number add thc second, and store into the
third location.

FLD NUM1 ;load first number
FADD NUM2 ;add second number
FSTP NUM3 B ;store result and pop

18.4.4
Multiple-Precision
Integer 11O

A multiple-precision number is a number stored in multiple
words. In section 18.4.1, you have already seen the special case of a double-
precision number. Normally, conversions of multiple-precision numbers be-
tween their decimal and binary representations are very time consuming.
We can use the 8087 to speed up the conversion process. To input a multi-
ple-precision decimal number and convert it into-binary, we first store it xx}
BCD format. Then the 8087 can be used to convert the BCD into binary. T
output a binary multiple-precision number in decimal, we first use the 8087
to convert it into BCD and then output the BCD digits.

Chapter 18 Advanced Arithmetic * 385

o R B Y

The algorithm for reading digits and converting to packed BCD for-
mat is as follows:)

Algorithm for Converting ASCIl Digits to Packed BCD

read first char

case ‘-’ : set sign bit of BCD buffer

) 0 ... "9 : convert to binary and push on stack
while char <> CR ~

read char

~case ’'0’ ... ’9’ : convert to binary and push on stack
" end_while
: repeat~

pop stack .

ésgemble 2 digits to one byte
until all digits are popped

The algorithm is coded in procedure READ_INTEGEh, which also
converts the BCD number into temporary real format. We can convert the
number into other binary formats by using different store instnictions. The
READ_INTEGER procedure is given in program listing PGM18_2.ASM. The

. input buffer is 10 bytes and contains O’s initially. We also assume the input
" number is at most.18 digits.

Lt . - :
Program Listing PGM18_2.ASM

READ_INTEGER . PROC

;read multiple precision integer number and store as

;real number

_sinput: . BX = address of 10-byte buffer of 0's
. XOR BP,BP . ;BP counts number of digits read

MoV SI, BX ’ ;copy- of pointer

;read number and push digits on stack
MOV AH, 01 - ; read
INT ‘21 '

;check for negative
CMP AL, -
JNE RI_LOOP1. = ;not.negative

;negative, set sign byte to 80h
MOV BYTE PTR {BX+9},80H

INT 214 ;read next char
:éheck for CR
RI_LOOP1:

CMP AL, ODH :CR?

JE RI_1 ;CR, goto RI_1
;digit, convert to binary and savc on stack

AND AL, OFH ;convert ASCIY to binary value

INC ~ BP sincrexi:nt count

PUSH AX ;push on stack

MOV AH, 01 ;s read next char

INT 21H -

JMP RI_LOOP1 s repeat

,pop number from stack and store as packed BCD
RI_1:

MOV CL,4 | ;counter for left shifts
RI_LOOP2:

386 184 The 8087 Numeric Processor

POP AX ;low digit

MOV: -, .[BX],AL istore

DEC BP ;more digits?

JE RI_4 ;no, exit loop

POP AX: :yes, pop high digit
SHL AL,CL ;shift to high nibble:
OR [BX],AL ;store

INC BX ;next byte

DEC BP ' ;more digits?

JG RI_LOOP2 ;yes, repeat

iconvert to real)

RI_4: FBLD TBYTE PTR(SI] ;load BCD to 8087 stack
FSTP TBYTE PTRI[SI) ;store real to memory
RET .

READ_INTEGER ENDP

‘Once the numbers are converted"tO'bin'ary format, ‘we may add, subtract,
multiply, and divide them. As long as the results do not cause overflow, we
can store the results as BCD numbers and print out the results in decimal
using the following algorithm. ~

Algorithm for Printing Packed BCD Numbers

if sign bit is set, then print -’

get high order byte

for 9 times do
convert high BCD digit to ASCII and output
convert low BCD digit to ASCII and output
get next byte.

end’ -

The ‘algorithm is coded as procedure PRINT_BCD given in program listing
PGM18_3.ASM. .

Program Listing PGM18_3.ASM
PRINT_BCD: - PROC
;priht BCD number in buffer
;input: BX = addresses of 10-byte
TEST BYTE PTR{BX+9},80H ;check sign bit

JE PB_1 ;positive, skip
MOV DL,"-’ . ;negative, output’-’
MOV AH,2
“TINT - 214
PB_1: "ADD BX, 8 ;start with most significant digit
MoV CH, 9 ;9 bytes
MOV CL, 4 ;shift 4 times
PB_LOOP:
MOV DL, (BX] ;get byte
SHR DL,CL ;high digit to low nibble
OR DL, 30H ;convert to ASCII
MOV AH, 2 ;output
‘INT 21H :
MOV DL, [BX] ;get byte again

AND DL, OFH ;mask out high nibble

Chapter 18 Advanced Arith(netic' 387

OR CL, 30K . ;convert low digit to ASCIl
MOV ' AH, 27 . ;output

INT 21H -

DEC BX - ;next byte

DEC CH smore digits:

JG PB_LOGP . ;yes, repect

RET e

. PRINT_BCD ENDP

When we combine 8086 and 8087 instructions in a program, we
need to make sure the 8086 does not access a meinory location tor an 8087
result before the 8087 can finish an operation and store the result. To syn-
chronize the 8086 with the 8087 we use the instruction FWAIT, which
suspends the 8086 until the 8087 is finished executing.

Program listing PGM18_4 gives a program that reads in two multiple-
precision numbers, and outputs the sum, difference, product, and quoticin,

~ Program Listing PGM18_4.ASM
TITLE PGM18_4: MULTIPLE PRECIZTON ARITHMETIC
sipputs 2 multiple precision numbers
;outputs the sum, difference, product, and quotient
.MODEL SMALL

.8087
.STACK
" .DATA
NUM1 DT 0
NUM2 DT 0
SuM DT 2
‘DIFFERENCE DT 7
PRODUCT DT ?
QUOTIENT DT ?
: CR EQU ODH
LF EQU OAH
NEW_LINE MACRO ;output CR and LF
MOV DL,CR)
MOV ° AH,2
; INT Z1iH
MOV DL, LF
INT 21H
ENDM
DISPLAY MACRO X ;output X on screen
’ MOV DL, X ’
MoV AH, 2
INT 2iH -
3 ENDM ’
.CODE

‘iirclude I/0 procedures
INCLUDE PGM18_2.ASM
INCLUDE PGM18_3.ASM'

MATI PROC

.o

388

18.4 The 8087 Numeric Processor

MOV AX,@DATA
MOV DS,AX
MOV ES,AX

DISPLAY *?2°
LEA BX,NUM1

CALL READ_INTEGER
NEW_LINE

DISPLAY ‘2’

LEA BX, NUM2

" CALL READ_INTEGER

NEW_LINE

;compute. sum

FLD NUM1

FLD NUM2

FADD

FBSTP SUM
FWAIT

LEA BX,SUM
CALL PRINT_BCD
NEW_LINE

;compute difference

FLD NUM1

FLD NUM2

FSUB

FBSTP DIFFERENCE
FWAIT

LEA BX, DIFFERENCE

CALL PRINT_BCD

NEW_LINE
;compute product

FLD NUM1

FLD NUM2

FMUL

FBSTP PRODUCT

FWAIT

LEA BX, PRODUCT

CALL PRINT_BCD

NEW_LINE
;compute gquotient

FLD NUM1

FLD NUM2

FDIV

FBSTP QUOTIENT

FWAIT

LEA BX, QUCTIENT

CALL PRINT_BCD

NEW_LINE

MOV AH, 4CH

INT 21H

ENDP

MAIN

END MAIN

sinitialize DS
sinitialize ES

;display prompt
;BX points to buffer
:input first number

;BX points to buffer
;input second number

;load first number

;load second number

;add

;store and pop
;synchronize 8086 and 8087
;BX points to SUM

;output SUM

iload first number

;load second number
;subtract second from first
;store difference and pop
;synchronize 8086 and 8087
;set pointer

;output DIFFERENCE

;load first number

;load second number
;multiply

;store product and pop
;synchronize 8086 and 8087
;BX points to PRODUCT
;output PRODUCT

;load first number

;load second number
;divide first by second
;store quotient and POP
;synchronize 8086 and 8087
;set pointer

;output QUOTIENT

;sreturn
;to DOS

Chapter 18 Advanced Arithmetic 389

18.4.5 : : .

Real-Number 110 ' Numbers with fractions are called real numbers. The algorithm for read-
ing real numbers is similar to that for integers. The digits are read in as BCD,
then converted to floating point and scaled. To do the scaling, a counter is set
to the number of digits after the decimal point.

Algorithm for Reading Real Numbers

- repeat: read char
case ’'~’: set sign bit of BCD buffer

+ e set flag -

0’ ... "9’: convert to binary and push on stack
: and if flag is set, increment counter
until CR
repeat:
pop stack . .
assemble 2 digits. to one byte.
until all digits are éopped
load BCD onto 8087 stack
divide by nonzero cobnt\value

store back as real , .
The algorithm is coded as procedure READ_FLOAT given in program listing
PGM18_5.ASM.

Program Listing PGM18_5.ASM
READ_FLOAT PROC
;read and store real number .

;input: BX = address of 10-byte buffer of 0’s
XOR ' DX,DX - ;DH = 1 for decimal point,
e " ;DL = no. of digits after decimal pnint
XOR '.BP,BP " .. ;BP counts number of digits read
o MOV SI,BX 7 ;copy of pointer
;read number and push digits on stack
RF_LOOPl: L
MOV~ AH, 01 <" iread.char
INT 21H

;check for negative
LCMP AL, ’:!)
_.JNE _ RF.1 .. ;not negative, check
;negative, set sign byte
MOV BYTE PTR [BX+9],B0H-

. . JMP .RF_LOOP1 ;read next char
RF-1: CMP | AL,’.’ " ‘;decimal point?
(JNE ~ RF 2 ;. "'ino,” check CR

. -, R B, A .
;decimal point, set DH to 1
.o NG WDHO

JMP RF_LOOP1 " fead next char
;check fer CR:-

RF_2: CMP AL,ODH

. JE - RF_3 ;CR, ~goto RF_3

;digit, convert to Linary and save o stack
AND AL,OFH . ;i ;convert ASCII to binary value
INC BP ;increment count -

PUSH AX ;push on stack

390

18.4 The 8087 Numeric Processor

CMP TH,0
JE RF_LOOP1
INC DL

JMP RF_.LOOP1

;pop number from stuck and

iseen decimal point?
ino, read next chai
syes, increment ccunt
;read next char

tore as packed BCD

RE_3:
MoV CL,4 jcounter for left shifts
RF_LOOP2:
POP AX ;get low digit
MOV ([BX],AL ;store in buffer
DEC BP ;decrement count
Je RF_4 idone if O
POP AX ;get high digit
SHL AL, CL ;move to high nibble
OR {BX]),AL ;move to buffer
INC BX ;next byte
DEC BP : ;more digits”?
JG ' RF_LOCP2 ;yes, repeat
;convert to real
RE_4: FBLD TBYTE PTR{SI] ;load BCD to 8087 stack
FWAIT ;synchronize 8036 and 38087
cMmp DL, 0 ;digits after decimal?
JE RF_S :/no scaling, goto RF_S
XOR CX,CX
MOV CL,DL ;digit count in CX
MOV AX,1 :prepare to form
MOV BX, 10 ipowers of 10
RF_LOOP3:
IMUL BX ;multiply 1 by 10
LOOFP RF_LOOPJ ;CX times
MOV [s1}),AX ;save scaling factor .
FIDIV WORD PTR{SI] ;divide by scaling factor
RF_S5: FSTP TBYTE PTR([SI] ;stcre real tc memory
FWAIT ;synchronize 8086 and 8087
RET

READ_ FLOAT ENDP

Here, we assume that the number of digits after the decimal point is tes¥
than 5, which aliows the scaling factor to be stored as a one-word signed
integer.

To output real numbers, we first muitiply the nuiiber by a scaling
factor. Then we store the real number in BCD format, and output the digits
with an appropriate decimal point. We print only four digits after the decimal
point. So the scaling factor is 10000.

Algorithm for Printing Real Numbers with a Four-Digit Fraction

miltiply real numb2t by 10000

store as BCD

cutput BCD number with *.’ inserxted before last 4 digirts
... Thealgotithm is coded as procedure PRINT_FLOAT given in program
listing PGM18_G.ASM.

" Chapter 18 Advanced Anthmetic 391

Program Listmg PGM18_6.ASM
PRINT_| F‘LOA"‘ PROC

‘iprint top ‘of! 8087 Tstack™
~1nput. “BX ‘= address ‘ofsbuffer

MOV WORD PTR(BX] 10000 ;ten thousand
FIMUL wonox PTR[BX] ;scale up by 10000
FBSTP TBYTE. PTR[BX] ;store as BCD
FWAIT ;synchronize 8086 and 8087
TBST BYTE PTR[BX+9] 80H ;check sign bit
JEe PRI . ;0, goto PE_1
MOV ., DL,V".— . ;output ‘-'
MoV AH, 2
' INT -"21H'
PF_l:‘AdD " BX, 8¢ V;point to high byte
MOV CH,7. ;14 digits before decimal point
oo MOV CL,4 4 shifts ' .
MOV DH,2 ;2 times
PF_LOOP: = W ! S
MOV DL, {BX] ";get BCD digits
SHR ' DL,CL_: ;move high digit to iow nibbie
OR .. DL,30H. .;convert to ASCII
INT 21K ‘;output
MOV DL, [BX) ,get byte again
AND DL,OFH ,mask out high digit
OR DL, 30H ,convert to ASCII
INT 21H ioutput
DEC BX 'Jut b.next byte
DEC CH e ' ;decrement count
JG PF_LOOP ;repeat if mcre bytes
‘DEC DH ;second time?
JE -* "PF_DONE: ;yes, . done*
DISPLAY '.’ ino, output decimal point
MOV CH, 2 ;4 more digits after decimal point
. JMP PF _Loop, ;go print digits :
PF_DONE: T v
RET

PRINT FLOAT ENDP

. w!
The program to combme these procedures is left as an exercise.

Summary

£

¢ Double-precision numbers increase the range of integers repre-
sented.

e The ADC and SBB instructions are used in performing double-
- precision addition and subtraction.

: . Mulﬁplication and division of double-precision numbers by
.powers of 2 can be implemeénted by shift and rotate instructions.

392

Glossary

In the BCD system, the decimal digits of a number are expressed
in four bits. A number is stored in packed form if two BCD digits
are contained in a byte; in unpacked form, one BCD digit is con-
tained in a byte.

The advantage of the BCD representation is that it is easy to con-
vert decimal character input to BCD and back. The disadvantage
is that decimal arithmetic is more complicated for the computer
than ordinary binary arithmetic.

The AAA instruction adjusts the sum in AL after addition.
The AAS instruction adjusts the difference in Al after a subtraction.

The AAM instruction takes the binary product of two BCD digits
in AL, and produces a two-digit BCD product in AH:AL.

The AAD instruction converts a two-digit BCD dividend in AH:AL
into its bxnary cquivalent in AL.

Floating-point format consists of a sign bit, an exponent, and a
mantissa.

The 8087 numeric ‘processor can perform a varicty of numeric
operations on integer, BCD, and real nuinbers.

Glossary

BCD (binary-coded A system of coding each decimal digit as
decimal) system _ four binary digits

bias A number that is added to the exponents

to make them positive

doublc-precision number Number stored in two computer words
exponent The part of a floating-point number con-

sisting of the power

floating-point number Nurhber represented in memory in the

form of exponent and mantissa

mantissa v The part of a floating-point number con-

sisting of the significant digits

multiple-precision number Number stored in multiple words

packed BCD form Two BCD digits stored in a byte
unpacked BCD form One BCD digit stored in a byte

New Instructions 3

hAR FDIV FLD
ARD FIADD FMUL
AMM F1DIV FST
AAS FILD FSTP
ADC FIMUL FSUB
FADD FIST FWAIT
FBLD FISTP . SBB

EBSTE

FIsyus

Chapter 18 Advanced Arithmetic 393

New Pseudo-Ops
.8087

Exercises
For exercises 1 to 6, use only the 8086 instructions.

1. Write a procedure DSUB that will perform a double-precision sub-
traction of CX:BX from DX:AX and return the difference in
DX:AX. DSUB should set the flags correctly.

2. Write a procedure DCMP that will perform a double-precision
compare of CX:BX from DX:AX. The registers should not be
changed, and the flags should be set correctly.

© 3. Write the instructions that will perform the following dcuble-
precision operations. Assume that the number is in DX:AX. Do
single shifts and rotates. i

a. SHR
b. SAR
¢. ROR
d. ROL
e. RCR
f. RCL

4. A triple-precision number is a three-word (48-bit) number. Write
instructions that will perform the following operations on the
two triple-precision numbers stored in A+4:A+2:A and B+4:B+2:B.
a. Add the second number to the first.

b. Subtract the sccond number from the first.

5. Write Instructions that will perform an arithmetic right shift on a

triple-precision number stored in BX:DX:AX. :
- 6. Suppose two unpacked 3-digit BCD numbers are stored in
A+2:A+1:A and B+2:§+1:B. Wirite instructions that will
a. add the second number to the first; assume the result is only
three digits.

b. subtract the second number from the first; assume that the
first number is larger.

7. Represent the number -0.0014 as an 8087 short real.
Represent the number -2954683 as an 8087 packed BCD.
9. Write the floating-point instructions that will
a. add an integer variable X to the top of the stack.
b. divide a short real number Y into the top of the stack.
c. store and pop the stack to a BCD number Z.

.

304 " Programming Exercises

Programming Exercises
.

10. Write a program (0 read in two decimal numbers from the key-
board and output their sum. The numbers may be negative and
"_have up to 20 digits. Do not use the 8087 instructions.

11. Write a program to read in two real numbers, with up to four dec-
- imal digits after the decimal point, and output their sum, dif(ecr-
ence, product, and quotient.

19

Disk and File
Operations

Overview

Up till now, we have used disk storage exclusively as a repository for
system and user program files. Disk files can also be used to store input and
output data of a program. Common examples are databases and spreadsheets.
In this chapter, we study disk organization, disk opcrations, and fite handling.

19.1

Kinds of Disks

“There are two kinds of disks, floppy disks and hard disks. Floppy disks
are made of mylar and are flexible, hence the name. Hard disks are made of
inctal and are rigid. The surface of a disk is coated with a inctallic oxide, and

information is stored as magnetized spots.
- Floppy and hard disk operations are similar. A disk drive unit reads

- and writes data on the disk with a read/write head, which moves radially in

and out over the disk surface while the disk spins. Each hcad position traces
a circular path called a track on the disk surface. The movement of the
read/write head allows it to access different tracks.

Floppy Disks

A floppy.disk is contained in a protective jacket and comes. it
3¥s-inch or SV4-inch diameter sizes. The jacket for a SVs-inch disk is made
of flexible plastic and has four cutouts (sce Figure 19.1): (1) a center cutout
so that the disk drive can clamp down on the disk and spin it; (2) an
oval-shaped cutout that allows the read/write head to access the disk sur-
face; (3) a small circular hole that aligns with an index hole on the disk
used by the disk drive to identify the beginning of a track; and (4) a

98

396 19.1 Kinds or Lisks

Disk

Jacket ——

Hub

v

-
-~

~

N

AN Write-protect
\‘ q‘ notch
\

\
\

opening

~
~
~

3

]
1
1
]
!

n Index hole

[
rr‘-— T~
td ‘\
[N
N ~
».
&
h
¢
’
’
’
’
.
- 4
.
.
.
.
~o .
~o .-

Read-write
opening

Figure 19.1 A 5Vs-inch Floppy Disk

write-protect notch—if open, the disk can be read or written; if taped
over, the disk can only be read.

The 312-inch disk has a more sturdy construction. Its jacket is made
of hard plastic, which makes it more rigid; it has a metal-reinforced hub for
longer use and a metal sliding cover that protects the read/write head access
opening. The write-protection hole operates differently from that of the
SV4-inch disk; the disk is write-protected when the hole is open. There is no
index hole. Figure 19.2 shows a 3¥2-inch disk.

Hard Disks . -~

A hard disk consists of one or more platters mounted on a common
spindle. Both sides of a platter are used for recording, and there is one
read/write head for each side of a platter. All the heads are connected to a
comunon moving unit. See Figure 19.3.

The read/write head hovers just above the disk surface, never actually
touching it during operations (unlike a floppy disk). The space between the
head and the disk surface is <0 small that any dust particle would cause the
head to crash onto the disk s.rface, so hard disks and their disk drives come
in hermetically sealed cases. :

Chapter 19 Disk and File Operations 397

. Write-protect notch

High-capacity notch

.

Disk ———yj+—— -
'.
)
z
.
Y
A
\\\ .
sliding \
_____._)
cover S

Ay
\
v
[l |

f
I
-
il N

Jacket

Read-write
opening

Figure 19.2 A 3Va-inch Floppy Disk

. . -Hard disk access is much faster than for a floppy disk for several reasons:

(1) a hard disk is always rotating, so no time is lost in starting up the disk, (2)
hard disks rotate at a much faster rate (usually about 3600 rpm, or revolutions
per minute, versus 300 rpm for a floppy disk), and (3) because of its rigid surface
and dust-free environment, the recording density is much greater.

19.2
Disk Structure

Information on a disk is stored in the tracks. When a disk is formatted,
tracks are partitioned into 512-bytc areas called sectors. DOS numbers tracks,

* starting with 0. Within a track, sectors are also numbered, starting with 1. The
number of tracks and sectors per track depends on thé kind of disk.

1

A cylinder is the collection of tracks that have the same number.

For example, cylinder O for a floppy disk consists of track 0 on each side of

t}l'é disk; for a hard disk; cylinder O consists of the tracks numbered 0 on
both sides of each: platter. Cylinders are so named because the tracks that
make up a cylinder line up vertically and seem to form a physical cylinder

398 19.2 Disk Structure

A ¢ylinder

Spindie -

" Read/write heads

Figure 19.3 A Hard Disk

(see Figure 19.3). The number of cylinders a disk has is equal to the number

of tracks on each surface.

DOS also nuinbers the surfaces that make up a disk, beginning with
0. A floppy disk has surfaces 0 and 1. A hard disk can have more surface
numbers, because it may consist of several platters.

19.2.1
Disk Capacity

The capacity in bytes that can be stored on a disk can be calculated
as follows: -

© capacity in bytes = surfaces x tracks/surface x sectors/track x 512 bytes/sector

For example, a SVa-inch floppy disk has this capacity:

capacity in bytes = 2 surfaces x 40 tracks/surface x 9 sectors/track
x 512 bytes/sector = 368,640 bytes

Tables 19.1A and 19.1B give the number of cylinders, sectors/track, surfaces,
and capacity for some of the floppy and hard disks in use today.

The density of information on a floppy disk depends on the recording
technique Two common recording techniquies are double density and high deng
A high-density drive uses a narrow head and it can read double-density di
however, a double-density drive cannot read a high-density disk.

Chapter.19 Disk and File Qperations 399

Table 19. 1A Floppy Disk Capaaty

Kind of Dlsk CylmdersSectors/Track . Capacity
SVa in. 40 9 368,640 bytes
double density

Sk in. : 80 : 15 1,228,800 bytes
-high density

3V2in. 80 9 737,280 bytes
double density .
315 in. 80 18 1,474,560 bytes
high density

Table 19.1B Hard Disk Capacity.

Kind of Disk Cylinders Sectors/Track . Sides Capacity

10 M8 306 17 4 10,653,696 bytes
20 MB 615 -~ 17 ' 4 21,411,840 bytes
30 M8 615~ 17 6 32,117,760 bytes ..
50 MB 940 17 8 65,454,080 bytes

19.2.2
Disk Access

» _..The method of accessing information for both floppy and hard disks
is similar.. The disk drive is under the control of the disk controller circuit,
which is responsible for moving the heads and reading and writing data.
Data are always accessed one sector at a time.

The first step in accessing data is to position the head at the right
track. This may involve moving the head assembly—a slow operation. Once
the head Is positioned on the right track, it waits for the desired sector to
come by; this takes additional time. Because all the tracks in a cylinder can
be accessed without moving the head assembly, when DOS is writing data
to a disk it fills a cylinder before going on to the next cylinder.

19.2.3.
File Allocation

To keep’ track of the data stored on a disk, DOS uses a directory
structure. The first tracks and sectors of a disk contain information about
the disk’s file structure. We'll concentrate on the structure of the 5Vs- inch
double-density floppy dxsk Wthh is organized as follows:

Surface Track Sectors Information
0 0 1 boot record (used
Y . in start-up)
Q 0 2-5 file allocation table
s . (FAT)
0 0 6-9 . file directory
1 0 1-3 file directory
1 0 4-9- data (as needed)
0 1 1-9 data (as needed)

400

19.2 Disk Structure

The File Directory

DOS creates a 32-byte directory \entry for each file. The format of an
entry is as follows: ~

Byte Function

0-7 filename (byte 0 is also used as a
status byte)

8-10 extension

11 attribute (see below)

12-21 _reserved by DOS

22-23 creation hour:minute:second

24-25 creation year:month:day

26-27 starting cluster number (see discussion
of the FAT)

28-31 - file size in bytes

There are seven sectors in the difectory area, cach with 512 bytes. Each file
entry contains 32 bytes, so there is room for 7 x §12/32 = 112 cntries, How-
ever, file entries also may be contained in subdirectories.

The directory is organized as a tree, with the main directory (a.k.a.
root directory) as root, and the subdirectories as branches.

In a file directory entry, byte O is the file status byte. The FORMAT
program assigns O to this byte; it means the entry has never been used. ESh
means the file has been deleted. 2Eh indicates a subdirectory. Otherwise,
byte O contains the first character of the filename.

" When a new file is created, DOS uses the first available directory
field to store information about the file.

Byte 11 is the attribute byte. Each bit specifies a file attribute (see
Figure 19.4).

A hidden file is a file whose name doesn’t appear in the directory
search; that is, the DIR command. Hiding a file provides a measure of security
in situations where several people use the same machine. A hidden file may
not be run under DOS version 2 (it may be run under DOS version 3). However,
the attribute may be changed (sce section 19.2.8) and then it can be rug,

The archive bit (bit 5) is set when a file is created. H is used by
the BACKUP command that saves files. When a file is saved by BACKUP,
this bit is cleared but changing the file will cause the archive bit to be sey
again. This way the BACKUP program knows which file has been saved.

The attribute byte is specified when the file is created, but as men-
tioned earlier, it may be changed. Normally when a file is created it has
attribute 20h (all bits O except the archive bit). -

An example of a file directory entry is given in section 19.3.

Clysters

DOS sets aside space for a file in clusters. For a particular kind of
disk, a cluster is a fixed number of sectors (2 for a 5V4 in. dcuble-density
disk); in any case, the number of sectors in a cluster is always a power of 2.

Clusters are numbered, with cluster 0 being the last two sectors of
the directory. Bytes 26 and 27 of the file’s directory entry contain the starting
cluster number of the file. The first data file on the disk begins at cluster 2.
: Even if a file is smaller than a ¢luster (1024 bytes for a 5V4 in. d
ble-density disk), DOS still sets aside a whole cluster for it. This means the
disk is likely to have space that is not belng used, even if DOS says it is full.

Chapter 19 Disk and File Operations 401

Sigure 19.4 Attribute Byte

7.65432

FTJIIITIJ
T

~— Read-only file
~- Hidden file
DOS system file
Volume label
Subdirectory
Archive bit

Not used

Not used

The FAT

The purpose of the file allocation table (FAT) is to provide a- -
map of how files are stored on a disk. For floppy disks and 10-MB hard disks,
FAT entries are 12 bits in length; for larger hard disks, FAT entries are 16 bits
long. The first byte of the FAT is used to indicate the kind of disk (Table

19.2). For 12-bit FAT entries, the next two bytes contain FFh.

How DOS Reads a File

" To see how the FAT is organized, let's take an example of how DOS
uses the FAT to read a file (refer to Figure 19.5):

1. DOS gets the starting-cluster number from the directory; let’s sup-
pose it is 2.

2. DOS reads cluster 2 from the disk and stores it in an area of mem-
ory calicd the data transfer arca (DTA). The program that ini-
tiated the read retrieves data from the DTA as needed.

3. Since entry 2 contains 4, the next cluster in the file is cluster 4. If

. the program needs more data, DOS reads cluster 4 into the DTA.

4. Entry 4 in the FAT contains FFFh, which indicates the last cluster

. in the file. In general, the process of obtaining cluster numbers
" from the FAT and reading data into the DTA continues untii a
FAT entry contains FFFh.

Table 19.2 The First Byte of the FAT for Some Disks

Kind of Disk _First Byte (hex)
Sva-in. double density : 2]
SV4-in. high density f9
3V4-in. double density F9
*3V%-in. high density FO

Hard disk o

402 19.3 File Processing

Figure’19.5 Example of a FAT

Enty 0 7 1% ‘2 '3 4 5 & 7 8 9

-FDF | -FFF | 004 | 005 | FFF | 006 | 007 | 008 | FFF | 000

As another example, the FAT in Figure 19.5 shows a file that occupies
clusters 3, 5, 6, 7, and 8. '

How DOS Stores a File
- To store a disk file, DOS does the following:

1. DOS locates an unused directory entry and stores the filename, at-
tribute, creation time, and date. :

2: - DOS searches the FAT for the first entry indlcating an unused clus-
ter (000 means unused) and stotes the starting cluster number in
the directory. Let’s suppose it finds 000 in entry 9.

3. If the data will fit in a cluster, DOS stores them in cluster 9 and
places FFFh in FAT entry 9. If there are more data, DOS looks for
the next available entry in the FAT; for example, Ah. DOS stores
more data‘in‘cluster Ah, and places 00Ah in FAT entry 9. This pro-
cess of finding unused clusters from the FAT, storing data in those
clusters making each FAT entry point to the next cluster contin-
ues until ail the data have been stored. The last FAT entry for the
file contains FFFh.

19.3 -
File Processing

In this section, we discuss a group of INT 21h functions called the
file- handle functions. These functions were introduced with DOS version 2.0
and make file operations much easier than the previous file control block
(FCB) method. In the latter, the programmer was responsible for setting up
a table that contained information about open files. With the file handle
functions, DOS keeps track of open file data in its own internal tables, thus ‘
relieving the programmer of this responsibility. Another advantage of the
file handle functions is that a user may specify file path names; this was not
possible with the FCB functions. _

In the following discussion, reading a file means copying alt or part
of an existing file into memory; writing a file means copying data from

memory to.a file; rewriting a file, means replacing a file's content with

ot her data.

19.3.1 A
File Handle

When a file is opened or:created in a program, DOS assigns it a
unique number called the file handle. This number is used to identify the |

‘file, so the program must save it.

There are five predefined file handles. They are

\

Chapter 19 Disk and File Operations 403

keyboard

screen

error output—screen
auxnlcary ‘device
printer

A W N-= O

In addition to these files, DOS allows three additional user-defined files to
be open (it is possible to raise the limit of open user files See the TDOS
manual).

19.3.2
File Errors There are many opportunities for errors in INT 21h file handling;
‘DOS- ldentnﬁes ‘éach-error by ‘a’¢ode number. In the functions we describe
here, if an error'odéurs then'CF is'set and the code number appears in AX.
The following list contains-the more common file-handling errors.
Hex Eiror Code Me"a"p/‘ngv -
R invalid function number
2 file:not found
3 path not found
4 all avallable handles in use
5 access denied
"6 *invalid flle handle
C mvalld ‘access code
F mval:d drive specified
10 ‘attempt to™ rgmove current directory
11 not.the’same device
12 ‘fio more files to be found
In the following secuons, we describe the DOS file handle functions. As with
the DOS 1/0 functions'we have been using, put a function numter in AH
and execute INT 21h.
19.3.3

Obening and Closing

a File

Before a file-can-be used; it must be opened. To create a new file or
rewrite an existing file. the user provides a filename and an attribute; DOS

returns a file handle.

"INT 21h, Function 3CH:
-Open.a New File/Rewrite a File
Input: AH="3Ch’
DS:DX = addtess of filéname, which is an ASGIHZ string
{a:string . ending with a 0 byte)
CL = attnbute
Qutput: .If successful, AX = file handle
. ‘Error if CF = 1, error cade in AX (3, 4, or 5)

404

19.3 File Processing

The filename may include a path; for example, A:\PROGS\PROG1.ASM. Pos-
sible er-ors for this function are 3 (path doesn’t exist), 4 (all file handles in
use), cr S (access denied, which means either that the directory is full or the

file is a read-only file).

Example 19.1 Write instructions to open a new rcad-only file called
FILE1. '

Solution: Suppose the filename is stored as follows

ENAME DB *FILE1’,0
HANDLE DW 2

The string FNAME comaimng the filename must end with a 0 byte. HANDL !-:
will contain the file handle.

‘MOV AX, @DATA

MOV DS, AX . ;initialize DS

MCV AH, 3CH ;open file function

LEA DX,FNAME ;DX has filename address
MOV CL,1 ;read_only attribute

INT 21H ;open file

MOV HANDLE, AX ;save handle or error code
Jc OPEN_ERROR ;jump if error

if there were an error, the program would jump to OPEN_ERROR where we

could print an error message.
To open an existing file, there is another function:

INT 21h, Function 3Dh:
Open an Existing File

Input: AH = 3Dh
" " DS:DX = address of filcname which is an ASCIIZ string
AL = access code: 0 means open for reading
1 means open for writing
2 means open for both
Output: If successful, AX = file handle ~ ’ |
Error if CF = 1, error code in AX (2,4,5,12) i

.

After a file has been processed, it should be closed. This frees the file
handle for use with another file. If the file is being written, closing causes
any data remaining in memory to be written to the file, and the file's time,
date, and size to be updated in the directory.

INT 21H, Function 3Eh:
Close a File

Input: BX = file handle

Output: If CF = 1, error code in AX (6) ﬂ&

Chapter 19 Disk and File Operatior:s 405

Example 19.2 Write some code to close a file. Suppose variable
HANDLE contains the file handle.

Solution:

MOV AH, 3EH ;cluse file function
MOV BX, HANDLE ;get handle

INT 21R iclose file

3¢ CLOSE'ERROR . ;jump if errcr

The only,thing that could go wrong is that there might be no file corre-
spondig to the file handle (error 6). .

19.34
Reading a File

MoV DS, ax

‘The'following functionreads a specificd numbher of bytes jrorn a file

- and stores them in memory.

" INT 21H, Function.3Fh:
Read a File

Input: y AH = 3Fh
BX = file handle ~ :
CX = number of bytes to read .‘
PS:DX =-memory bufferaddress i
Output: AX = number of bytes actuaily read. I
If AX = 0 or AX < CX, end of file encounterd. i
If CF = 1, error code in AX (S,6)

Example 19.3 Write somic codeto read a 512-byte sector from a :iie.

- ‘Solutjon: yFirst we must set up a memory block ‘hutfer) te receive the data:

.

.DATA
BANDLE TW 2
BUFFER [B 512 DUP (D)

The instructions are

MOV AX,UDATA

MOV AH,3FH
MOV B¥, HANDLE
MOV CX7312
INT 21H

JC °REAL_E=®

- In some applications, we may waiit te read and process seciors until
end of file (EOF) is encounicred. The program can check fur £OF by come
paring’'AX and CX:- it : :

CMP AX,CX JRUE? e
JL -EXIT'
JMF READ_LOZP

406. 19.3 File Processing

19.3.5 "
Writing a File

Function 40h writes a specified number of bytes to a file or device.

INT 21H, Function 40h:
Wirite File - .

Input: AH = 40h
BX = file handle
CX = number of bytes to write
‘ DS:DX = data address
Output: AX = bytes written. If AX < CX, error (full disk)
If CF = 1, error code in AX (5,6) 1

- .-

It is possible that there is not enough room on the disk to accept the.data;
DOS doesn‘t regard this as an error, so the program has to check'for it by

comparing AX and CX.
Function 40h writes data to a file, but 1t can also be used to send

data to the screen or printer Qhandles 1 and 4, respectively).
Example 19.4 Use function 40h to display a message on the screen.
Solution: Let’s supposé the message is stored as follows:

.DATA
MSG DB . *DISPLAY THIS MESSAGE’
The instructions are

MOV AX, @DATA .
MOV DS, AX sinitialize DS

MOV AH,40H ;write file function
MOV BX, 1 - :screen-.file€ handle
MOV CX,20 ;length of message
LEA DX,MSG ;get address of MSG
INT 21H . :display MSG

19.3.6
A .Program to Read
and Display a File

To show how the file handle functions work, we will write a program
that lets the user enter a filename, then reads and displays the tile on the screen.

Algorithm for displaying a file

Get filename from user
Open file
IF open ceCrror
THEN ,
display error code and exit
ELSE
REPEAT
Read a sector into ruffer

Chapter 19 Disk and File Operations 407

Display -buffér
UNTIL end of' file
Close file

FENDIF

Program Listing PGM19_1.ASM
-0:* TITLE PGM19_l: DISPLAY FILE

1: " .MODEL.SMALL

2

3: .STACK 100H

.4 :

45 .DATA o

6 PROMPT DB- 'FILENAME: S’

7 FILENAME DB 30 DUP (0),

8: BUFFER DB 512 -DUP (0)

9: HANDLE . DW ? -

10: OPENERR DB- ODH, OAH, 'OPEN ERROR - CODE’

.11; ERRCODE DB 30H,'s’

12:

13: .CODE

14: MAIN PROC.: ;

15: MOV AX,@DATA

16: MOV DS, AX <. ;initialize DS

17: MOV. (ES,AX._ - ;and ES

18: CALL .GET_NAME - ;read filename

19: LEA . DX,FILENAME -;DX has filename offset
20: MOV AL,O ;access code 0 for reading’
21:° CALL OPEN; ;open file

22z, JC. OPEN_ERROR ;exit if error

23: MOV HANDLE, AX ;save handle

124: READ_LOOP: :

25: LEA: DX,BUFFER , ;DX pts to buffer

26: MOV * BX,HANDLE --:get handle)
27: CALL READ ;read file. AX ="§bytes read
28: OR. AX,AX send of .file? 5

29: JE ., EXIT . ;yes, exit : f: .
30: MOV, : CX,AX tCX gets no. of bytes read
31: CALL DISPLAY --;display file

;32 JMP READ_LOOP .- jexit

33: OPEN_ERROR:.} .

34:- ‘LEA A DX,OPENERR , ;get error megsage

35:- ADD ERRCODE, AL ;convert error code to ASCII
36: * MOV AH, 9 o

37: JINT © 21H ;display error messzge
'38: EXIT! N B

39 MOV YT BX, HANDLE - ;get handle

40: CALL\t*"CLOSE jnsclose file

41: X"MOV :7°AH, 4CH

42: INT T721H vdos exit

43: MAIN ENDP-,t3

44: e

45: GET_NAME PROC :NEAR

46: >;reads and-stores, filename
47: ;inputiy.none
481:;output: filename stored.,as, ASCIIZ string

408 19.3 File Processing

49: PUSH AX ;isave registers used
50: PUSH DX)

S51: PUSH DI

52: _ MOV' AH,9 ;display string fcn
53: LEA DX, PROMPT

54: INT 21H ;display data prompt
55: CLD)

56 LEA DI,FILENAME ;DI pts to filename
57: MOV AH, 1 ;read char fcn

58: READ_NAME:

59: INT 21H ;get a char

60: CMP AL, ODH . +CR?

61: JE DONE iyes, exit

62: STOSB ;no, store in string
63: JMP READ_NAME ;keep reading

64: DONE: .

65~ MOV AL, Q

66: STOSB ;store 0 byte

67: POP DI ;restore regjisters
68: POP DX

69: POP AX

70: RET

71: GET_NAME " ENDP

72:

73: OPEN PROC NEAR

74: ;opens file
75: -;input: DS:DX filename

76: AL access code
77: ;output: if successful, AX handle
78: if unsuccessful, CF = 1, AX = error code
79: MOV AH, 3DH ;open. file fecn
’ 80: MOV AL, O : ;input only
8l: | INT 21H ;open file
82: RET
83: OPEN ENDP
84:)
85: READ PROC - NEAR

86: ;reads a file sector
87: ;input: BX file handle

88: CX bytes to read (512)
89: ; DS:DX buffer !
90: joutput: if successful, sector in buffer
91: AX number of bytes read
92: ; if unsuccessful, CF= 1
93: PUSH CX :
T 94: MoV AH, 3FH ;read file fcn
95: MOV CX,512 ;512 bytes ,
96: INT 21H ;read file into buffer
97: POP cX
98: RET
99: READ ENDP
100:

101:DISPLAY PROC NEAR

102: ;displays memory on screen
103:;input: BX = handle (1)

104:; CX = bytes to display

Chapter 19 Disk and File Operatiors 409

105:; ' DS:DX = data address

106: ;output: AX = b‘tes displayed

107: TPUSH EX bl

108% MOV iH,40R ;write file fen
109: T MOV EX, 1 ;handle for screen
‘110: INT® Z:8% ;disploy fiie
111: BOF BX

112: RET

113: DISPLAY ENDP

114: :

115:CLOSE PROC NEAR
116: ;cioses a* file
117:;input: BX.=: handle

118: ;output: if CF = 1, error code in AX

119: MGV An, 3UH - ;ciuse file fcn
120: INT 1K ;ciose file
121: RET

122: CLOSE ENLE

123:

t 124, EnNp MAIN

At line 18, procedure GET_NAME Is called to reccive the filename trom the
user and store it in array FILENAME as an ASCIIZ string. After FILENAML's
offset is moved to DX, procedure OPEN is called at line 21 to open the file.
The most likely crrors are nonexistent file or path. If cither happens, OPEN
returns with CF set and the error code 2 or 3 in AL. The prograin converts
the code to an ASCII character by adding it to the 30h in variable ERRCODE
-(line 35), and prints an crror message with the appropriate code number. .
.Note: typing. mistakes will be treated as errors.
¥ If the file opens successfully, AX will contain §, the first available
- handle:after the predcfined handies..

. :... Atline 24, the program enters the main processing. loop. First, pro-
_»ccdure READ is called to fead a sector into array BUFFER. CF is set if an error
occurred, but the conceivable errors (access denied, illegal file handie) ate
not possible in this program, so AX will have the actual number of bytes
read. If this is zero, EOF was encountered on the previous call to READ, and
the program calls procedure CLOSE to close the file.

If AX is not 0, the number of bytes rcad is moved to CX (line 30)
and procedure DISPLAY is called to display the bytes on the screen.

Sample Executions:

C>PGM1Y_1
FILENAME: A:A.TXT
THIS IS A SMALL TEST FILE

- C>PGM19_1
FILENAME: A:B.TXT
OPEN ERROR - CODE 2 (nonexistent-file)

C>PGM19_1
FILENAME: A:\PROGS\A.TXT
OPEN ERROR - CODE 3 (illegal.path)

410 18.3 File Processing

19.3.7
The File Pointer

The file pointer is used to locate a position in a file. When the file
is opened, the file pointer is positioned at the beginning of the file. After a
read operation, the file pointer indicates the next byte to be read; after writing
a new file, the file pointer is at EOF (end of file).

The following function can be used to move the file pointer.

INT 21H, Function 42h:
Move File IPoinger
Input: AH = 42h
AL = movement code: 0 means move relative to
: beginning of file
. . - 1 means move relative to
the current file pointer location
.2 means move relative to
. - the end of the file
BX = file handle :
- CX:DX = number of bytes to move (signed)
Output: DX:AX = new pointer location in bytes from the
_ beginning of the file
If CF < l error code m AX (l €)

CX:DX contains the number of bytes to move the pointer, expressed as a signed
‘number (positive means forward, negative means backward). If AL = 0, move-
ment is from the beginning of the file; if AL = 1, movement is from the current

' pointer position. If AL = 2, movement is from the end of the file.

<{ <+ "If CX:DX is too large, the pointer could be moved past the beginning
or end of the file. This is not an error in itself, but it will cause an error when

- the next file read ot write is executed.
- The following code moves the pointer to the end of the file and

determmes the flle size:

MOV .AH 42H ;move file ptr function

MOV | BX, HANDLE ;get handle
XOR CX,CX L S
- XOR , DX, DX, ;0 bytes to move
MOV AL, 2 ;relative to end of file
INT 21H ;move pointer to end.
. ;DX:AX = file size
Jc MOVE_ERRCR serror IF CF = 1

Application: Appending Records to a File

The following program creates a file of names. It prompts the user
to enter names of up to 20 characters, one name per line. After each name
is entered, the program appends it to the file and blanks the input line on
the screen. The user indicates end of data by typing a CRTL-Z.

Algorithm for Main Program

Open NAMES file
Move file pointer to EOF
Print data prompt

Chapter 19 DKanQJﬁb(m@yantns

1WHILE a <CTRL-Z> has not:been:typed DO
.Cet:-a -name; from-the use:r and stcre in byte
varrayi: NAMEFLD s : :

wWrite name to NAMES file

ENDWHI LE

#Cl.selNAMESxfile /

<- ST .
“The program calls procedure GET_NAME to get 4 name from the uscr.

" Algorithm for GET_NAME Procedure

;Put blanks-in first 20 bytes'_._of NAMEFLD (last
T2 bytes; are <CR><LF>)
_REPFAT
Read a character -
IF character is <CTRL-2> (1Ah)
THFN] .
Joi CF and exit
ELSF:-1IF :character is not <Cm>
THEN, I .
store character in NAMEFLD
ENDIF
*UNTIL character is :<CR>
;Blank input line on screen

ﬁmgram‘Listing PGM19_2.ASM . A
TITLE PGM19_2: APPEND RECORDS
“MODEL. : SMALL

.+ WSTACK (100

PROMPT 1i/DB - 'NAMES:’, ODH, OAH, '$’
NAMEFLD DB; 20 DUP,:(‘0%),O0DH, OAH
:8: FILE . .DB VNAMES’ ,0 " ;=

3: HANDLE -DW -2 .

10: OPENIRK rzLB :0DH, OAH)’ OPEN. ERROR §'
'11: WRITERR.; DB ODH, CAH, WRITE ERROR S’

H .DATA

13: .CODE

114: MAIN , PROC 7«

15 'MOV AX,@DATA . -

16: MOV DS, AX sinitialize DS

17: MOV | ES,AX ..sand ES |

'18: ;open NAMES file - ’

i9: LEA DX,FILE c;get addr of filename
20: #gh CALL OPEN .:;open tile

21: HE (o :OPEN_ERROR .r;exit if error

22: MOV, +HANDLE,AX .;;save handle

23: ;move .file pointer to eof.¢«v

24: " MOV . . BX,HANDLE. . ;get handle

25: . CALL 'MOVE PTR.. ;. move pointer

26t ;print’ promptvl [

27: <MOV ¥ AH, 9 r1ydisplay string fon
28: . TEA TIDX,PROMPT . :;“"NAMES:"-

29: INT. Vi21H :-idisplay prompt

411

N

412

19.3 File Processing

30: REAP_LOOP: ;read names
31 - LEA DI, NANEFLD ;DI pts to name
s 32: CALL GET_NAME iread name
33: Jc EXIT ’ . sCF = 1 if end of data
34: ;append name t5 NAMES file. .
35: MoV BX.,HANDLE :get handle
36: MOV CXx, 22 ;22 bytes for name, CR, LF
37: LEA DX,NAMEFLD :get addr of name
38: . CALL WRITE ;write to file
39: JC WRITE_ERROR ;exit if error
40: JMP READ_LOOP jget next name
41: OPEN_ERROR:
42: LEA DX, OPENERR ;get error message
43: MOV AH,9
44: CINT 21H ;display error message
$5: JMP EXIT '
§6€: WRITE_ERRCR:
47 LEA DX, WRITERR ;get error message
A5 MCV AH, 9
CE R INT 21H . +display error message
506: EXIT: -
51: MOV BX,HANDLE - ;get handle
£2: CALL CLOSE sclose NAMES file
53: MoV AH, 4CH
S4: INT 21H ;dos exit
55: MAIN ENDP . '
56: -
57: GET_NAME PROC NEAR
$8: ;reads and stores a pamre
59: ;input: DI = offset aadress of NAMEFLD
60: ;output: name stored at NAMEFLD ‘ ’
6l: CLD .
62: MOV - AH,1 ;read char function
63: ;clear NAMEFLD
04: PUSH DI save ptr to NAMEFLD
63: MoV Ci, 20 ;name can have up to 20 chars
66: MOV AL,* ¢ -
67: REP STOSB ;store blarks
68: POP DI ;restore ptr
69: READ_NAME:
70: INT 21H ;read a char
71: cMP AL, 1AH ;end of data?
72 JNE NO sno, continue
73 5TC :yes, set CF
74 RET ;and return
75: KO
76: cMp AL, ODH ;end of name?
77: JE DONE ;yes, exit
78 STOSB ;no, store in string
79: JMP READ_NAME :keep reading
80: ;clear input line
61: DONE:
82: MOV AH, 2 ;print char fen
83: MOV DL, ODH :)
84: INT 21R sexecute CR
85: MOV DL," ‘- iget blank

Chapter 19 Disk and File Operations 413

'86: MOV : CX, 20 ,

87: CLEAR: .

88 INT - 21H .

'89: ~ LOOP; . CLEAR jclear input 1line

90: MOV DL, ODH :
‘95 INT - " 21H ' ' ;reset cursor to start of line
92: RET

93: GET_NAME ENDP

94: ' ,

'95: 'OPEN ~ ' PROC NEAR

96: ;opens file. L

87: ;input: DS:DX _ filename:

98: ;- AL access code

99: ;output: if successful, AX handle

100: ; if unsuccessful, CF = 1, AX = error code
101: MOV AH, 3DH ;open filetfcen

102: MOV AL, 1 iwrite only

103: INT 21H . iopen file -

104: RET

105: OPEN ENDP

106:

107:WRITE PROC NEAR

108: ;writes a file

109;;input: BX = handle

110:; CX = bytes to write

111:; DS:DX = data address
1i2:;output: AX = bytes written.

113:; If unBuccessful, CF = 1, AX = error code
114: MOV AH, 40H * ;write file fcn

115: INT - 21H Twrite file -

116: RET

117: WRITE ENDP

118:

119:CLOSE PROC NEAR

120:;closes a file

121:;input: BX = handle

122: ;output: if CF = 1, error code in AX

123: MOV AH, 3EH sclose file fcn
124; INT 21H ;close file

125; RET e - -
126: CLOSE ENDP

127:

128:MOVE~PTR PROC NEAR

129;:;moves file pointer to eof
130:;input: BX =« file handle
131:;output: DX:AX = pointer position from beginning

132: MoV AH, 42H smove ptr function
133 XOR, cX,Cx ;0 bytes .
134 'XOR. DX,DX ;from end of file !
'135¢ mov. aLr2 smovement code

136: INT 218 ‘;jmove ptr.

137: RET

'138:MOVE_PTR ENDP

139:

140: END MAIN

414 19.3 File Processing

The program begins by using INT 21h, function 3Dh, to open the NAMES
tile. Since this function may-only be used to open a file that already exists,
a blank file NAMES must be created before the program is run the first time.
To create such a file,'eénter DEBUG and:follow these steps:

1. Use the N command to name the file (type N NAMES).
‘2. Put 0 in BX and CX (specify 0 file length).
3. Write file t6 disk (fype W).

After the program has been run, the DOS TYPE command may be used to view it.

Sample execution: (The input'names are actually entered on the same line,
but will be'shown on separate lines.)

ITPGM19 2

NAME S :

GEORGE WASHINGTON
JOHN ADAMS
<CTRL-7Z>

C:TYPE NAMES
GECRGE WASHINGTON
Jounl ADAMS

C>PGM19 2.
NAMES:

THOMAS JEFFERSON

HARRY TRUMAN
SUSAN .B. ANTHONY
<CIRL - o™

_>TYPE NAMES
GECRGE WASKINGION
JOHR ALAMS
FHOMAS JEFFEARSUN
HARPY TRUMAN
SU3AN B. ANVHONY

19.3.8

Changing a File’s

Attribute

In section -19.1.2, we saw that a'file’s attribute is specified when it

is created (function 3Ch). The following function provides a way to get or
change the attribute,

Chapter 19" Disk and File Operations

a1s

INT'21M, Function 43h:
Get/Change File Attribute

Innnt. AH = 43h
DS:DX = address of file pathname as ASCIIZ string
AL =0 to get attribute*
- =1 to change attribute
CX = new file attribute (if AL = 1)

Output: If successful, CX = current file attribute (if AL = 0)
Error if CF = 1, error code in AX (2,3, or §)

This’ functlon may not be used to change the volume label or subdirectory

bits of the file attribute (blts 3 and’ 4).

Example:19.5 .Change a:file’s attribute to hidden.

Solution:

MOV AH, 43H ;get/change attribute fecn

“MOV AL, 1’ ;changé' attribute option

LEA DX, FLNAME ;get path

Mov Cx, 1 '";hiddén "attTibute

INT 21H - .. ;change attribute

JC ATTR_ERROR ;exit if error. AX = axror code

194
Direct Disk
Operations

Up to now, we have been talking about operations on files using the
DOS INT 21h file handle functions. There are two other DOS interrupts for

reading and writing disk sectors directly’

-

19:4.1
INT 25h and
INT 26h .

The’ DOS mtermpts for reading and writing sectors are INT 25h and
INT 26h, respectively. Before mvokmg these interrupts, the following regis-

ters must be initialized:

AL = drive number (0 = drive A, 1 = drive B, etc.)
DS:BX.= segment:offset of memory buffer
"CX = number of sectors to read or write
DX = sta’rtin‘g logical sector number (see following section)

Unlike INT 21h, there is no function number to put in AH. The interrupt

" routines place the contents of the FLAGS register on the stack, and it should

be popped before the program continues. If CF = 1, an error has occurred

rand AX gets the error.code.

416

19.4 Direct Disk Operations

Table 19.3 Logical Sectors

Surface Track Sectors Logical Sectors Information

0 0 1 0 Boot record

0 0 2-5 1-4 FAT

0 0 6-9 5-8 File directory

1 0 1-3 9-11 (Sh-8h) File directory

1 0 4-9 12-17 (Ch-11h) Data (as needed)

0 1 1-9 18-26 (12h-1Ah) Data (as needed)
Logical Sector Numbers

In section 19.1.2, we identified positions on a disk by surface, track,
and sector. 1DOS assigns a logical sector number to each sector, starting with 0.
Logical sector numbers proceed along a track on surface O, then continue on
the samne track on surface 1. Table 19.3 gives the correspondence between sur-
face-track-scctor and logical sector for the first part of a SVa-inch floppy disk.

Reading a Sector

As an example of a direct disk operation, the following program
reads the first sector of the directory (logical sector S) of the disk in drive A.

Program Listing PGM19_3.ASM
0: TITLE PGM139_3: READ SECTOR
1: .MODEL SMALL

2:
3: .3STACK 1GCH
4:
5: .UDATA
6: BUFt DB 512 LUP
Tr LEEOR_MSG. Bl
8:
?: JCOGLE
10: MATN I'ROC
11 MOV AX, 0DATA
12 MOV DS, AX
13: MOV AL, O
14: LEA BX, BUFF
15: MOV CX,1
o le: MOV DX, 5
17 INT 25K
i8: pPCP OX
19; NS EXIT
QD srere Lf errox
2% MCv AH, 2
22: LEA DX, ERRCR_MSG
23: INT 21H
24: EXIT:
25; MOV AH, 4CH
26: INT 238
27: MAIN ENDP
28:

29: END MAIN

o)

PERRCES”

iinitialize CS

sdrive A

;BX has kuffer cffset
;read 1 sectlr

;start at sectcr S
;read sector

;restore stach

;dummp If nn oerre.r

;jdisplay error message

;dos exit

Chapter 19 Disk and File Operations 417

To demonstrate the program, a disk containing two files A TXT and
B.TXT is placed in drive A, and the program is executed inside DEBUG. In
this environment, the program performs the same function as DEBUG’s L
(load) command. .

C>DEBUG PGM19_3.EXE

-G13

-D0
0F12

OF12:
oriz:
OF12:
* 0F12:
0F12:
0F12:
OF12:

(execute through lxne 18 above)
AX=0100 BX=0000 CX= 0000 DX=0005 SP=0062 BP=7420 SI=01B6 DI1=0001

DS=0F12 ES=0EFB SS=0F0B CS=0F33 IP=0013 NV UP EI PL ZR NA PE NC
0F33:0013 5SA

POP ° DX

(dump buffer)

: 0009

0010
0020
0030
0040
0050
0060
0070

41
00
42
00
00
Fé
00
Fé6

20
00
20
00
Fé6
F6
F6
F6

20 20 20 20 20 2p-54 58 34 20 00 00 00 00 A TXT

60 00 00 00 BD 19-22 16 02 00 80 00 00 00 =20 ..

20 20 20 20 20 20-54 58 54 20 00 00 00 00 B TXT

00 00 00 00 23 24-8A 16 03 00 80 00 00 0O #S........

‘'F6é F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 .vvvuvvvvuvvvevy

F6 F6 F6 F6 F6 F6-F%» r6 F6 F6 F6 F6 F6 F6 vvvvvvvvvvvvvvvy
F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 .vvvvvvvvvvvevvy
F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 VVVVVVVVVVVVVVVV

From the display, we can pick out the relative fields of the directory entries.
For file A,

Offset (hex) Information _ Bytes

0-7. filename 4120202020202020 A
8-A extension 54 58 54 - ™T
B attribute 20

C-15 reserved by DOS

16-17 creation time BD 19

18-19 creation date 22 16

1A-18’ starting cluster 02

1C-1D file size 80

The format of the creation hour:minute:second is hhhhhmmmmmmsssss
For this file,

198Dh=00011 001101 11101
= 3:13:29
The year:month:day has form yyyyyyymmmmddddd where the year is rel-
ative to 1980 for this DOS version. We get

1622h= 0001011 0001 00010
" =11:1:2 (actually 91:1:2)

Examining a File Allocation Table

As another example, we can put a disk that contains several files in
drive A and use the preceding program to display the first part of the fAT,

418 Summary

which begins at logical sector 1. If we change line 17 in the program to read
MOV DX,1 and run the program inside DEBUG, the result is

~-do

OF12:0000 FD FF FF FF 4F 00 05 60-00 07 FO FF 09 AC 00 OB
OF12:0010 CO 00 OD EO 00 OF 00 01-11 20 01 13 40 01 15 60
0F12:0020 61 17 80 ¢l 19 A0 01 1B-CO 01 1D EO 01 1F 00 02
0F12:0030 21 20 02 23 40 02 25 60-02 27 80 02 29 A0.02 2B
0F12:0040 CO 02 2D EO 02 2F 00 03-31 20 03 33 40 03 35 60
0F12:0050 03 37 80 03 39 A0 03 3B-CO 03 -3D EO 03 3F 00 04
OF12:0060 41 20 04 43 40 04 45 60-04 47 80 04 49 A0 04 4B
0F12:0070 CO 04 4D EO 04 4F 00 05-51 20 05 53 40 05 55 60

The FAT is hard to read in this form because FAT entries are 12 bits = 3 hex
digits. To decipher the display, we need to form 3-digit numbers by alter-

nately (1) taking two hex digits from a byte and the rightmost digit from

the next byte, and (2) taking the remaining (leftmost) digit from that byte

and the two digits from the next byte. Performing this operation on the

preceding display, we get

CLUSTER © O 1 2 3 4 S 6 7 8 9 A
CONTENTS FFD FFF FFF 004 005 006 007 FFF 009 00A 00B

The first data file begins in cluster 2. The entry there is FFFh, so the file also
ends in this cluster. The next file begins in cluster 3 and ends in cluster 7.
The next one starts in cluster 8, and so on.

Summary

¢ The FORMAT program partitions each side of a disk into concen-
tric circular areas called tracks. Each track is further subdivided
into 512-byte sectors. The number of tracks and sectors depends
on the kind of disk. A 5V4-inch 'double-density tloppy disk has 40
tracks per surface and 9 sectors per track.

* In storing data, DOS fills a track on one side, then proceeds to a
track on the other side.

* Data abput files are contained in the file directory. A file entry
includes name, extension, attribute, time, date, starting cluster,
and file size.

* A file’s attribute byte is assigned when it is opened. The attri-
bute specifies whether a file is read-only, hidden, DOS systemYy
file, volume, label, subdirectory, or has been modified. The
usual file attribute is 20h.

Chapter 19 Disk and File Operations 419

e DOS sets aside space for a file in clusters. A cluster is a fixed num-
bérof séctors (2 tor a double-density floppy disk). The first data
tile on the disk begins in cluster 2.

» The FAT (file allucation table) provides a map of how files are
stored on the disk. Each FAT entry is 12 bytes. A file’s directory
entry contains the first cluster number N1 of the file. FAT entry
N1 contains the cluster number N2 of the next cluster of the file
if there is one; the last FAT entry for a file contains FFFh.

« The DOS INT 21h file handle functions provide a convenient way
to do file operations. With them, a file is assigned a number
called a file handle when it is upened and a program may identity

a file by this number.

¢ File handle functions are specified by putting a function number
in AH and invoking INT 21h. The main tunctions are 3Ch for
opening a new file, 3Dh for opening an existing file, 3Eh for clos-
ing a file, 3Fh for reading a file, 40h for writing a file, 42h for
. moving the file pointer, and 43h for changing the tile attribute.

* - DOS interrupts INT 25h and INT 26h may be used to read and

write disk sectors.

Glossary
archive bit

attribute byté
cluster

Cyiilldﬂl'
data transfer arca (DTA)

" file allocation table (FAT)
filg handle

file pointcr
hidden file

read a file
rewrite a file -
sector

status byte
track

write a file

Used to indicate the most recently modi-
fied version of a file

* Specifies a fife's attribute

A fixed number of sectors—depends on
the kind of disk
_The collection ot tracks on ditferent sur-
faces that share a track numbsr
Area of memory that DOS uses to store
data from a file
Provides a map of file storage on a disk
‘A number used by INT 21h functions to
identify a file
Used to locate a position in a file

* A file whouse name doesn’t appear in a

disk’s directury search
Copy dll or part of the file to memory
Replace a file's contenits by other data

A 512-byte section of a track

Byte 0 in a file directory entry
A circular area on a disk
Copy data from memory to the file

420

Exercises

Exercises

1. Verify that 1,228,800 bytes can be stored on a $V4-inch floppy
disk that has 80 cylinders and 15 sectors per track.

2. Suppose FAT entries for a disk are 12 bits = 3 hex digits in length.
Suppose also that the disk contains three files: FILE1, FILE2, and
FILE2, and the FAT begins like this:

ENTRY
CLUSTER

2 3 4 S 6 7 8 9 A B C D E F
004 009 00B FFF OOA FFF FEFF 000 000 000 000 000 000 000

a. If FILE1, FILE2, and FILE3 begin in clusters 2, 3, and 7, respec-
tively, tell which clusters each of the files are in.

b. When a file is erased, all its FAT entries are set to 000. Show the
contents of the FAT after each the following operations are per-
formed (assume the operations occur in the following order):

s FILE1 is erased.
¢ A 1500-byte file FILE4 is created.
- FILE2 is erased.
* A 500-byte file FILES is created.
* A 1500-byte file FILEG is created.
3. Write instructions to do the following operations. Assume that
the file handle is contained in the word variable HANDLE.

a. Move the file pointer 100 bytes from the beginning of a file.

b. Move the file pointer backward 1 byte from the current location.

c. Put the file pointer location in DX:AX.

4. From the DEBUG display of the file directory in section 19.4.1,
determine the creation time, date, and size for file B.TXT.

Programming Exercises

5. Write a program that will copy a source text file into a destination
file, and replace each lowercase letter by a capital letter. Use the DOS
TYPE. command to display the source and destination files.

6. Write a program that will take two text files, and display them
side by side on the screen. You may suppose that the length of
lines in cach file is less than half the screen width.

7. Modify PGM19_2.ASM in section 19.3.7 so that it prompts the
user to enter a name, and determines whether or not the name
appears in the NAMES file. If so, it outputs its position in hex.

8. Modify PGM19_2.ASM in section 19.3.7 <c that it prompts the user
to enter a name. If the name is present in the NAMES file, the pro-
gram makes a copy of the flle with the name removed. Use the DOS
TYPE command to display the original file and the changed file. .

Intel’s Advanced
Microprocessors

Overview

We have so far been concentrating on the 8086/8088 processors. In
this chapter, we take a look at Intel’s advanced microprocessors, which have
become very popular. We'll show that they are compatible with the 8086
and can execute 8086 programs. In addltion, they have fcatures that support
memory protection and multitasking.

In section 20.1 we discuss the 80286. The operating system software
needed to use the protected mode of the 80286 is discussed in section 20.2.
In section 20.3 we discuss the 80386 and 80486 processors.

20.1 .
The 80286
Microprocessor

Like the 8086, the 80286 is also a 16-bit processor. It has all the 8086
registers and it can execute all the 8086 instructions. It was designed to be
compatible with the 8086 and also support multitasking. This is achieved
by having two modes or operation: rcal address mode (also called real
mode), and protccted virtual address mode (protected mode, for
short). . :
In real address mode, the 80286 behaves like an 8086 and can exe-
cute programs written for the 8086 without modification. In addition to the
8086 instructions, it can execute some new instructions called the extended
instruction sct.

In protected mode, the 80286 supports multitasking and it can ex-
ccute additional instructions needed for this purpose. There are also addi-
tional registers being used in this mode.

Let us start with the extended instruction set.

,

421

422

20.1 The 80286 Microprocessor

20.1.1
Extended Instruction Set

The extended instruction set contains some 8085 instructions with
additional operand types as well as new instructions. They are push and pop,
multiply, rotate and shift, string 1/O, and high-level instructions.

PUSH and POP

The 80286 allows constants to be used in the PUSH instruction. lhe
format is

PUSH immediate

With this instruction, we no longer ‘have to put a constant into a register
and then push the register. For example, we can use PUSH 25 instead of '
MOV AX,25 and PUSH AX.

There are also instructions for pushing and popping all general reg-
isters. The instruction PUSHA (push all) pushes all the general registers in
the following order: AX, CX, DX, BX, SP, BD, SI, and DI. The instruction
POPA (pop all) pops all the general registers in the reverse order: DI, SI, BP,
SP, BX, DX, CX, and AX. These two instructions are useful in procedures
that need to save and restore all the registers.The formats are

PUSHA ,
POPA

Multiply

The 80286 has three new formats for IMUL that permit multiple
operands:

IMUL regl6, immed
IMUL reglé6, regl6, immed
IMUL reglé,memlG, immed

where immcd is a constant, reg16 is a 16-bit register, and mem16 is a memory

word. The first format specifies an immediate operand as source and a general

16-bit register as destination. The second and third formats contain three

operands: the first operand is a 16-bit register that stores the product, the

multiplier and multiplicand are found in the second and third operands
iere aie some examples:

1. I1MuL BX, 20 ;BX and 20 are multipled and the
) ’ ;product is in BX

2. IMUL AX,BX,20 _ ;BX and 20 are multiplied and the
L . ;result is stored in AX
3. IMUL RX,WDATA,20 ;WDATA and 20 are multiplied and
;the result is stored in AX
Note that only the low 16 bits of the product are stored. The CF and OF are
cleared if the product can be stored as a 16-bit signed number; otherwise,
they are set. The other flags are undefined.

Shifts and Rotates -

The 80286 allows multiple shifts and rotates using a byte constant:
There is no need to use the CL register. For example, we may use SHR AX,4
instead of the two instructions MOV CL,4 and SHR AX,CL.

Chapter 20 Intel’s Advanced Microprocessors 423

String VO .

The 80286 alicws multiple bytes for input and output operations.
The input instructions are INSB (input string byte), and INSW (input string
word). The instruction INSB (or INSW) transfers a byte (or a word) from the
port addressed by DX into the memory location addressed by ES:DI. DI is
then incremented or decremented according to the DF just like other string
instructions. The REP prefix can be used to input multiple bytes or words.

The output instructions are OUTSB (output string byte), and
OUTSW (output string word). The instruction OUTSB (or OUTSW) transfers
a byte (or a word) from the memory location addressed by ES:SI to the port
addressed'by DX. SI is then incremented or decremented according to the
DF just like other string instructions. The REP prefix can again be .i.ed to
output multiple bytes or words. |

High-Level Instructions

The high-level instructions allow block-structured high-levei lan-
guages to check array limits and to create memory space on the stack for
local variables. The instructions are BOUND, LEAVE, and ENTER. Because
they are primarily used by compilers, we shall not discuss them further.

20.1.2
Real Address Mode

Address Generation

One of the major drawbacks of the 8086 lies in its use ot a 20-bit
address, which gives a memory space of only 1 megabyte. This 1-MB memory
is further restricted by the structure of the PC, which reserves the addresses
above 640 KB for video and other purposes. The 80256 uses a 24-bit address,
so it has 2 memory address space of 2% or 16 MB.

On first glance, it appears that the 80286 may solve a lot of th.
memory limitation problems. On closer examination, however, e see thit
programs running under DOS cannot use the extra mem sry. DOS is designed
for the 8086/8088, which corresponds to the real mode of the 80286. In
order to be compatible with the 8086, the 80286 real address mode generates
2 physical address the same-way as the 8086; that is, the 16-hit segmen!
number is shifted left four bits and then the offset is added. The 20-bit
number formed beconies thedow 20 bits of the 24-bit physical address; the
high four bits are cleared. This gives us a limit of 1 MB. ,

Actually, the 80286 can access slightly more than TMB inacal mode:
To illustrate, let us use a segment number of FFFi'h and an offset of FFIFh,
thie computed address is FFFFh + FFFFh =10FFEFh. In.the 8086, the extra bit
is dropped, resulting in a physical addres: of OFFEFh. Lor the 80286, becausc
thore are 24 address lines, the memory location 10FFETh is addressed. It is
simple to see that for the FFFFh segment, hytes with offset ad<dresses 10h to
FFFFY have 21-bit addresses. Thus, in the real address made, the 80286 can
access almost 64 KB more than the 8086. This address space above 1 MU is
used by DOS version 5.0 to load some of its routines, resulting in more
memory for application programs. Note that on many PCs the twenty-lirst
address bit must be activated by software befor> the higher memory can he
accessed. '

424 20.1 The 80286 Microprocessor

Programs Running Under DOS

Under DOS, the 80286 must operate in real mode. Any program
written for the 8086 will run on an 80286 machine under DOS. A program
for the 80286 may also contain extended instructions. To asseimble a program
with extended instructions, we must use the .286 assembly directive to avoid
assembly crrors,

As an example of extended instructions, let’s write a procedure to
output the contents of BX in hex. The algorithun is given in Chapter 7.

.286
HEX OUT PROC
soutput contents 9f BX in hex

PUSHA ;save all registers

MOV CX,4 ;CX counts # of hex digits
;repeat loop 4 times
REPEAT:

MOV DL,BH ;get the high byte

SHR DL, 4 ;shift out low hex digit

CMP DL, 9 ;see if output digit or letter

JG LETTER ' ;go to LETTER if > 9

OR DL, 30H ;<=9, change to ASCII

JMP PRINT ;output
LETTER:

ADD DL, 37H :>9, convert to letter
PRINT:

MOV AH, 2 ;output function

INT 21H ;output hex digit

SHL BX, 4 ;shift next digit into first

;position

LCOF REPEAT ’

POPA ;restore registers

RET

HEX_OUT ENDP

20.1.3
Protected Mode

To fully utilize the power of the 80286, we need to operate it in protected
mode. When executing in protected mode, the 80286 supports virtual a
dressing, which allows programs to be much bigger than the machine’s phys-
ical memory size. Another protected mode featurc is the support for
multitasking, which allows several programs to be running at the same time.
The 80286 is designed to execute in real mode when it is powered up. Switching
it into protected mode is normally the job of the operating system. In section
20.2 we look at some software that executes in protected mode.

Virtual Addresses

Applicatibn programs running in protected mode still use segment
and offsct to refer to memory locations. However, the segment number no
longer corresponds to a specific memory segment. Instead, it is now called
a scgment sclector and is used by the system to locate a physical segment
that may be anywhere in memory. Figure 20.1 shows a segment selector.

To keep track of the physical segments used by each program, The
operating system maintains a set of segment descriptor tables. Each ap-
plication program is given a local descriptor table, which contains

Chapter 20 Intel’s Advanced Microprocessors 425

Figure 20.1 Segment Selector

15 : 321 0

Index Ti| RPL

RPL (requested privilege level) = desired selector privilege level
Tl (table indicator) = 0, use Global Descriptor Table

= 1, use Local Descriptor Table
Index = number that selects descriptor in descriptor table

L4

information about the program’s segments. In addition, there is a global
descriptor table, which contains information on segments that can be
accessed by all programs.

The segment selector is used to access a scgment descriptor con-
tained in a segment descriptor table. As we sce in Figure 20.2, a segment
descripter describes the type and size of the segment, whether <he segment

‘is present, and a 24-bit base address of the segment in memory.

The process of translating the segment and offset used in an appli-
cation program into a 24-bit physical address gocs like this. First, the Tl bit
in the selector is used to select the descriptor table; T1 = 1 means the local
descriptor table and TI = O means the global descriptor table. The location
of the global table is stored in the register GDDTR (global descriptor table
register) while another register, the LDTR (local descriptor table register),
stores the local table of the current running program. Next, a segment de-
scriptor specified by the 13-bit index is accessed from the selected table to
obtain the 24-bit segment address. The offset is then added to the segment
address to obtain the physical address of the memory location.

A descriptor table may have up to 64 KB. Since a descrip:or is 8 bytes
each descriptor table can have up to 8 K (213) descriptors; each descriptor
specifies one program segment. A program can choose either its local table
or the global table,; so it can specify up to 16 K segments. Since the maximum
size of a segment is 64 KB, a program can use up to 16 K x 64 KB equals 2 ¢

Figure 20.2 Segment
Descriptor

15 8 7 o
+6 RESERVED, MUST BE 0
+4 - (P DPL S TYPE A BASE 2116
. 1 1 1
+2 BASE 150
0 LIMIT 0
P " =present - .
DPL = descriptor privilege level
§ .=segment descriptor
TYPE = segment type
A = accessed
BASE = physical memory address of segment
LIMIT = size of seament

426 20.1 The 80286 Microprocessor.

or 1 GB (gigabyte) of memory. This memory is known as virtual memory,
because the 80286 only has 16 MB of physical memory.

The virtual segments of a program are maintained on the disk drive.
The operating system may load the segments into memory as they are
needed. It uses the P bit in a descriptor to keep track of whether the corre-
sponding segment has been loaded into memory. If a virtual segment is not
loaded, the P bit in the corresponding descriptor is cleared.

An example is a program that is bigger than the physical memory
size. It must be loaded incrementally. When an instruction addresses a seg-
ment that is not loaded, the operating system is notified by the hardware
in the form of an interrupt. The operating system then loads the segment
and restarts the instruction. It may be necessary to save a memory segment
to disk to make room for this new segment.

Tasks

The basic unit of execution in protected mode is a task, which is
similar to a program execution in real mode. Each task has its own local
descriptor table. At any one time, only one task can be executing, but the
operating system can switch between tasks using an interrupt. Also, one task
may call another task.

- Because one task cannot access another task’s local descriptor table,
the memory segments of one task are protected from other tasks. To provide
further protection, each task is assigned a privilege level. There are four
privilege levels, 0-3. Level O is the most priviledged, and level 3 is the least.
The operating system operates at level 0, and application programs operate
at level 3. There are privileged instructions such as loading descriptor table
registers that can be executed only by a task at leve! 0. A task operating at
one level cannot access data at a’ more pnvx]egcd level, and it cannot call a
procedure at a less privileged level.

| 20.1.4
Extended Memory

As we have seen, the 80286 cannot access all its potent.al memory
when operating in real mode; this is also true for the 80386 and 30486. The
memory above 1 MB, called extended memory, is normally not available
for DOS application programs. However, a program could access extended
memory by using INT 1Sh. The two functions for dealing with extended
memory are 87h and 88h. A program uses function 88h to determine the
size of the extended memory available, and then uses function 87h to transfer
data to and from thc extended memory. A word of caution in using INT 15h
to manipulate extended memory: parts of the extended memory may be
used by other programs such as VDISK, and the memory may be corrupted
by your program. A better method is for the program to call an extended-
memory manager program for extended-memory access.

INT 15h Function 87h:
Move Extended Memory Block

Input: AH = 87h

CX = number of words to move

ES:SI = address of Global Descriptor Table
Output: AH = 0 if successful -

Chapter 20 Intel’s Advanced Microprocessors 427

When function 87h is called, the interrupt routine temporarily switches the
processor to protected mode. After the data transfer, the processor is switched
back to real modc. This is why a Global Descriptor Table is needed.

INT 15h Function 88h:
Get Extended Memory Size

Input: _ AH =88h

Output: ~ AX = amount of extended memory (in KB)

Program PGM20_1 copies the data from the array SOURCE to extended mem-
ory at 110000h and then copies back the information from extended memory
at 110000h to the array DESTINATION. Since the program does not do any
1/0, the memory can be examined in DEBUG.

Program Listing PGM20.1.ASM
TITLE PGM20_1: COPY EXTENDED MEMORY
.MODEL SMALL

.286 .
.STACK
.DATA o
SOURCE . DB ‘HI, THERE!’
DESTINATION DB 10 DUP (0)
- GDT D8 .48 DUP(?) ;global table
SRC_ADDR DB ?2,2,? :24-bit source address
DST_ADDR DB ?2,?,? /24-bit dest. address
.CODE .
MAIN PROC

MOV AX, @DATA
MOV DS, AX
MOV ES,AX
;put 24-bit source address 'in SRC_ADDR
MOV WORD PTR SRC_ADDR,DS ;get segment address
SHL WORD PTR SRC_ADDR, 4 ;shift seg no. 4 places
MoV AX,DS ;get highest 4 bits
SHR AH, 4
MoV SRC_ADDR+2, AH

LEA SI, SOURCE B . ;source offset address

ADD WORD PTR SRC_ADDR, SI ;add offset to segment

ADC SRC_ADDR+2,0 _ ;take care of carry
7put 24-bit destination address in DST_ADDR

Mov DST_ADDR, 0 ;destination address is

MoV DST_ADDR+1,0 7110000n

MOV DST_ADDR+2,11H
;set up registers

LEA $I, SRC_ADDR ;source address

LEA DX,DST_ADDR ;destination address

MOV CcX,5 ;number of words

LEA DI,GDT "~ :global takle
jtransfer data- :

CALL COPY_EMEM ;copy to cxtended memory
;set up source address

MOV SRC_ADDR, 0 ;source address is

MOV SRC_ADDR+1,0 . :110000h

428" 20.1 The 80286 Microprocessor

MOV

SRC_ADDR+2,11H

:set up destination address

MOV
* SHL
MOV
SHR
MOV
LEA
ADD
ADC

WORD PTR DST ADDR,DS
WORD PTR DST_ADDR, 4
AX,DS

AH, 4

DST_ADDR+2,AH
SI,DESTINATION

WORD PTR DST_ADDR, SI
DST_ADDR+2, 0

;set up registers

LEA
LEA
MOV
LEA
CALL
MOV
INT
MAIN ENDP
’

COPY_EMEM

SI, SRC_ADDR
DX, DST_ADDR
cX, s

DI1,GDT
COPY_EMEM
AH, 4CH

21H

PROC

;get segment address
;ishift seg no. 4 places
iget highest 4 bits

;destination offset addr
;add offset to segment
;take care of carry

;source address
;destination address
:number of words
;global table

;copy to DESTINATION
;DOS exit

;move block to and from extended memory

;input: ES:Dl = address of 48 byte buffer to be used as GDT
; CX = number of words to transfer

source address (24 bits)

; SI =
;

’

DX = destination address

(24 bits)

;initilize global descriptor table by setting up six

;descriptors
PUSHA

;~first descriptor is null, i.e.

MOV

STOSW
STOSW
STOSW
STOSW

AX, 0

;save registers
bytes of 0

. .

;—-second descriptor is set to 0, i.e. 8 bytes of 0

STOSW
STOSW
STOSW
STOSW

;—third descriptor is source segment
cX,1 ;convert to number of bytes

+ SHL
DEC
MOV
STOSW
MOVSB
MOVSB
MOVSB
MOV
STOSB
MOV
STOSW

CcX

AX,CX ;size of segment, in bytes

;source address, 3 bytes

AL, 93H ;access rights byte

AX, 0 H

;—fourth descriptor is de§tination segment
AX,CX ;size of segment, in bytes

MOV
STOSW
MOV

.

sI,DX ;destination address, 3 bytes

Chapter 20 Intel’s Advanced- Microprocessors 429

MOVSB
MOVSB
MOVSB
‘MOV AL, 93H ;access rights byte
STOSB)
MOV AX, 0
- STOSW . .
;—fifth descriptor is'set to 0
STOSW H .
STOSW : :
STOSW
STOSW
;—sixth descriptor is set to 0
STOSW
STOSW
' STOSW ;-
STOSW _
;restore registers
POPA
;transfer data
MOV SI,DI " ;ES:SI points to GDT
MOV AH, 87H
INT 15H
RET
COPY_EMEM ENDP

¢

-~

-~

~

END MAIN

The copying is done by procedure COPY_EMEM. It receives in CX
the number of words to transfer, in SI the location of a 24-bit source addrcss,
and in DI the location of a 24-bit destination address. The source and des-
tination buffers can be anywhere in the 16-MB physical address space of the
80286. COPY_EMEM first sets up the global descriptor table which contains
the source and destination buffers as program segments. It then uses INT
15h, function 87h to perform the transfer.

20.2
Protected-Mode
Systems

Now that we have some idea of how the hardware functions in
protected mode, let’s turn to the software. At present, there is no standard
multitasking operating system for the PC. We’ll look at Windows 3 and OS/2.
First, let’s consider the process of multitasking. .

Multitasking

In a single-task environment like DOS, one prograimn controls the
CPU and releases control only when it chooses to. An exception to this
scenario is that of an interrupt. In a multitasking environment, however,
such as Windows and O5/2, the operating system determines which program
has control and several programs can be running at the same time. Actually,
a program is given a small amount of time to execute, and when the time
is up, another program is allowed to execute. By rotating quickly among
several programs, the computer gives the impression that all the programs

are executing at the same time.

430 20.2 Protected-Mode Systems

20.2.1
Windows and 0S/2

Windows 3

Windows 3 is the most popular graphical user interface (gui)
on the PC. Each executing task is shown in a box on the screen, called a
window. A window may be enlarged to occupy the entire screen or shrunk
to a single graphics element called an icon. A Windows 3 application pro-
gram may provide services, identified by a menu, to the user. To select an
item in the menu, a user simply posmons a screen pointer with a mouse
at the item and clicks it.

Windows 3 can operate in one of three modcs: real mode, standard
mode, and 386 enhanced mode. When Windows 3 runs on an 8086 machine
or in the real address modes of the advanced processors, it operates in real
mode. An application program must end before another one can be execut

The standard mode of Windows 3 corresponds to the protected mode
of the 80286. Windows 3 uses the multitasking features of the 80286 to
support multiple Windows 3 applications. It can also execute a program
written for DOS. However, to run such a program it must switch the processor
back to real address mode. In this case, other applications cannot execute in
the background. Windows 3 requires at least 192 KB of extended memory
to run in this mode; otherwise it can only run in real mode.

The 386 enhanced mode of Windows corresponds to the protected
mode of the 386. In the next section, we'll see that the 386 can execute
multiple 8086 applications in protected mode. So, in 386 enhanced mode
Windows 3 can perform multitasking on Windows 3 applications as well as
DOS applications. A machine must have a 386 or 486 prccessor chip and at
least 1 MB of extended memory to run Windows 3 in this mode.

Windows 3 is not a complete operating system, because it still needs
DOS for many file operations. To run Windows 3, we must start in DOS a
then execute the Windows 3 program.

052

Unlike Windows 3, OS/2 is a complete operating system. OS/2 version
1 was designed for the protected mode of the 80286. It requires at least 2 MB
of extended memory. OS/2 version 2 supports the 80386 protected mode.

Threads and Processes

Under OS/2, it is possible for a program to be doing several things
simuiltaneously. For example, a program may display one file on the screen
while at the same time it is copying another file to disk. The program itself
is called a process, and each of the two tasks here is known as a thread.
A thread is the basic unit of execution in 05/2, and we can see that it cor-
responds to a task supported by the hardware. A thread can create another
thread by calling a system service routine.

To summarize, a process consists of one or more threads together
with a number of system resources, such as open files and devices, that are
shared by all the threads in the process. The concept of a process is similar
to the notion of a program execution in DOS.

Chapter 20 Intel’s Advanced Microprocessors * 431

20.2.2
Programming

We only show some simple OS/2 programs as an illustration. More
complex OS/2 programs and Windows 3 application programs are beyond
the scope of this book.

One noticeable dlfference between DOS and OS/2 for the programmer
is that, to do 1/O and system calls in O5/2, a program must do a far call to a
system procedure, instead of using the INT instruction. Parameters are to be
pushed onto the stack before the call is made. This is done to optimize high-
level language interface. The system procedures can be linked to the applica-
tion program by including the appropriate system library. Actually, the library
only contains a reference to the procedure and not the code.- The system
procedure is contained in a .DLL file and is linked when the program is loaded.
Linking modulés at loading time is called dynamic linking and is used by OS/2.
08/2 function calls are known as application program interface (API).

“Helto” Program

" As a first example, we show a program that prints out ‘Hello!’. The
program is shown in program listing PGM20_2.ASM.

Program Listing PGM20_2.ASM _
TITLE PGM20_2: PRINT HELLO

.28v

.MODEL SMALL
.STACK

.DATA

MSG DB "HELLO!’

NUM_BYTES DW 0

’

.CODE
EXTRN DOSWRITE FAR, DOSEXIT:FAR
MAIN PROC N
;put arguments for DosWrite on stack
PUSH 1 ;file handle for screen
PUSH DS ;address of message: segment
PUSH OFFSET MSG ;offset
PUSH S ;length of message
. PUSH DS ;addr of number of bytes written:
PUSH OFFSET NUM_BYTES ;offset
CALL DOSWRITE: . :;write to screen
;put arguments fcr DosExit on stack
PUSH 1 ‘ saction cecde 1 = end all threads
PUSH 0 ;return code 0
CALL DOSEXIT jexit
'MAIN ENDP
END MAIN

Notice that we do not have to initialize DS. When a program is loaded, 0S/2
sets DS to the data segment and it does not create a PSP for the program;

furthermore, OS/2 supports only .EXE files.
We have used two APl functions, DosWrite to write to the screen,,

-and DosExit to terminate.the program. DosWrite writes to a file; the argu-

ments are file handle, address of buffer, length of buffer, and address of
bytes-out variable. The file handle for the screen is 1. The bytes-out variable

seg

t

432 20.2 Protected-Mode Systems -

receives the number of bytes written to the file; the value can be used to
check for errors. The arguments must be pushed on teh stack in the order
given before calling DOSWrite.

DosExit can be used to terminate a thread or all threads in a process.
The arguments are (1) an action code to terminate a thread or all threads,
and (2) a return code that is passed back to the system that created the
process. The arguments for normal exit consist of an action code 1 to end
all threads and a return code 0.

In OS8/2, the called procedures are responsible for clearing the stack
of arguments sent to them when they return. Thus there are no POP instruc-
tions in our program.

The API functions DosWrite and DosExit are defined in the library file
called DOSCALLS.LIB. As a matter of fact, all APl functions used in this book
are contained there. To link the program, we use the following command:

LINK PGM20_2,,,DOSCALLS.

Echo Program
As a second program, we write a programn to echo a string typed at
the keyboard.

Program Listing PGM20_3.ASM
TITLE PGM20_3: ECHO PROGRAM

.286 .
.MODEL SMALL
.STACK
;
.DATA
BUFFER DB 20 DUF(0)
NUM_CHARS DwW 0
NUM_ BYTES DW 0
.CODE
EXTRN DOSREAD:FAR, DOSWRITE:FAR, DOSEXIT:FAR
MAIN PROC ’
;put arguments for DosRead on stack
PUSH O ;file handle for keyboard
PUSH DS ;address of buffer: segment
PUSH OFFSET BUFFER ;offset
PUSH 20 + ;length of buffer
PUSH DS ;addr of no. of chars read: segment
PUSH OFFSET NUM_CHARS ;joffset
CALL DOSREAD ;read from keyboard
;put arguments for DosWrite on stack.
PUSH 1 ;file handle for screen
PUSH DS ;address of messaqge: segment
PUSH OFFSET BUFFER ;offset '
PUSH NUM_CHARS ;length of message
PUSH DS ;addr of no. of bytes written: segmen
PUSH OFFSET NUM BYTES ;offset
CALL DOSWRITE iwrite to screen
;put arguments for DosExit con stack
PUSH 1 ;action code 1=end all threads
PUSH 0 ;return code 0
CALL DOSEXIT jexit
MAIN ENDP

END MAIN

Chapter 20 Intel’s Advanced Microprbcesso.'s 433

We use the APl function DosRead to read from the keyboard.

-.DosRcad inputs from a file and it takes the arguments: file handle, buffer

address, buffer length, and address of chars_read variable. The file handle
for the keyboard is 0. DosRead reads in the keys until the buffer is filled or
a carriage return. is typed. The number of characters read is returnied in the

chars-read variable.
We have treated the screen and keyboard as files for DosWrite and

.DosRead. There are also Vio (video) and Kbd (keyboard) API functions that

can perform more I/O operations.
The preceding two programs are only meant as an introcluction to

OSIZ programming. A full treatment requires a separate book.

203

80386 and 80486

Microprocessors

‘The 80386 and 80486 are both 32-bit microprocessors. As noted in
Chapter 3, they are very similar, with the exception that the 80486 contains
the floating-point processor circuits. In the following treatment, we'll con-
centrate -on the 80386, because the 80486 can be treated like a.fast 80386
with a floating-point processor. '

The 80386 has both a real address mode and a protected mode of
operation, just like the 80286.

.203.1
Real Address: Mode

The 80386 has eight 32-bit general registers: EAX, EBX, ECX, EDX,
ESI, EDI, EBP, ESP. Each register contains a 16-bit 8086 counterpart; for ex-
ample, AX is the lower 16 bits of EAX. There are six 16-bit segment registers:
CS, SS, DS, ES, FS, and GS, with DS, ES, FS, and GS being data segment
registers. The 32-bit EFLAGS register contains in it the 16-bit FLAGS register,
and the 32-bit EIP reg'lster contains the 16-bit IP register. There are also debug
registers, control ‘registers, and test registers. In addition, there are registers
for protected mode memory management and protection.

In real address mode, the 80386 can execute all of the 80286 1eal address

- mode instructions. Hence, to the programmer the 80386 real address mode is

similar to the 8086 with extensions to the instruction set and registers.
- The 80386 uses 32-bit addresses; but in real address mode it generates
an address like an 8086, so it can address at most 1 MB plus 64 kB just like

an 80286. -

.20.3.2
Protected Mode

The 80386 in protected mode can execute all 80286 instructions.

“When an 80286.protected mode operating system is used on an 80386, a

segmient descriptor coritains a 24-bit base address so only 16 MB of physical

memory are available. Actually, because there is no wraparound it can access

~16 MB plus 64 KB.-

: The'8G386 in protected mode allows a segment descriptor to contain

.a 32.bit address and the offset can also have 32 bits, giving a segment size -

‘of 232 or 4 -gigabytes; -this 'is’also thesize of the physical memory address

.space A Frogram can sull use 214 segments, so the virtual memory space is

which is 2% or 64’ terabytes. This should be sufficient for any
apphcanon..program in-the foreseeable future.

80386 and 80486 Microprocessors

Page-Oriented Virtual Memory

It is possible to organize the virtual memory into pages. The oper-
ating system can set a bit In a control register to indicate the use of page
tables. When this happens, the 32-bit address in the segment descriptor is
treated as a page selector that selects one of the 1-K page.tables from a page
directory, and a page number in the selected page table and an offset in the
page. The page directory contains 1 K tables, and each table contains 1 K
pages, and each page is 4 KB. Hence, the total address possible is 2 32 or the
entire 4 gigabytes of physical space. Each page is 4 KB of contxguous addresses
of physical memory.

Virtual 8086 Mode

The 80386 supports execution of one or more 8086 programs in an’
80386 protected mode environment. The processor executes in virtual 8086
(V86) mode when the VM (virtual machine) bit in the EFLAGS register is set.
In V86 mode, the segment registers are used in the same fashion as in real
address mode; that is, an address js computed by adding the offset to the
segment number shifted four bits. This linear address can be mapped to any
physical address by the use of paging.

20.3.3
- Programming the 80386

Sixteen-Bit Pr&gramming

The real mode 80386 instructions with only 16-bit operands are es-
sentially 80286 instructions. There are some new mstructlons, and they are
given in Appendix F.

Thirty-Two-Bit Programming

In 32-bit programming, both operand size and offset address are 32
bits. The machine opcodes for 32-bit 386 instructions are actually the same as
those for 16-bit instructions. It turns out that the 80386 has two modes of
operations, 16-bit mode and 32-bit mode. Since the instruction opcodes for
32-bit and 16-bit are the same, the operand type must depend on the current
mode of the 386. Byte-size operands are not affected by the operating mode.

When the 80386 is in protected mode, it can operate in either 16-bijt
or 32-bit mode; the operating mode is identified in the segment descript:
in each task. However, it can only operate in 16-bit mode when it is in real
address mode.

PR

Mixing 16- and 32-8Bit Instructions

It is possible to mix 16-bit and 32-bit instructions in the same pro-
gram. An operand-size override prefix (66h) can be placed before an instruc-
tion to override the default operand size. In 16-bit mode, the prefix switches
the operand size to 32 bits, and in 32-bit mode the same prefix switches the
operand size to 16 bits. One prefix must be used for each instruction.

There is also an address size override prefix (67h), which overrides
the offset address size. It is used in a similar manner as the operand size

-prefix, and they both can be used in the same instruction.

We demonstrate by writing a program for DOS (16-bit real mode)

" using 32-bit operands. The program given in program listing PGM20_4.

reads in two unsigned double-precision numbers and outputs their sum. The
addition is performed by 32-bit registers.

Chapter 20 . Intel’s Advanced Microprocessors - 435

Program Listing PGM20_4.ASM

TITLE PGM20_4: 32-BIT OPERATIONS

;input two 32-bit numbers and output their sum
;uses 386 32-bit operations

.386 .
.MODEL SMALL .
S_SEG SEGMENT ... USE16 STACK
- DB 256 DUP (?)
S_SEG ENDS
" D_SEG SEGMENT . USE16
.EIRST DD 0 sstores first 32-bit number
D_SEG ENDS
NEW_LINE MACRO
/go to next line
MOV BH,2
MOV DL, OAH
. INT . 21H
'MOV DL, ODH
INT 21H°
_ENDM)
PROMPT MACRO

joutput prompt
Mov DL, 2’

MOV AH, 2
INT 21H
' ENDM
C_SEG SEGMENT . USElé6
.. RSSUME . C$:C_SEG,DS:D_SEG,SS:S_SEG
MAIN PROC
MOV AX,D_SEG
 _MOV DS,RX . ;initialize DS
;output prompt’
" " 'PROMPT
;clear EBX

. Mov - EBX,OL .
;read character
Ll: MOV AH,1
INT 21H
;check for CR -
CMP AL, ODH

JE NEXT ;CR, get next number
. ;place digit' in"EBX- .
AND AL,OFH- *." ;convert to binary

IMUL ?EBX,10 *.5 /multiply EBX by 10)
"MOVZX !ECX AL - «- - ymove AL to ECX and extend with 0’s

_ADD. EBX,ECX." - radd “digit
" jrépeat o
Jvp. L1

1;.5ave’ first' number 1 -
NEXT:. MOV ° FIRST,EBX;
inext"line

436 20.3 80386 and 80486 Microprocessors

NEW 'LINE
;output rrampt

‘PROUMPT ~ -_
;jclear EBX .

MOV EBX, 0
;read character
L2: MOV AH,1

INT 214
;check for CR

cMP AL, ODH

JE SUMUP ;CR, sum up
;place digit in EBX ’
AND AL, OFH ;convert to binary
IMUL EBX,10 ;multiply EBX by 10
MOVZX ECX,AL ;move AL to EBX and extend with*0‘s
ADD EBX, ECX ;add digit
; repeat
JIMP L2
;sum up

SUMUP : ADD EBX, FIRST ¢EBX has sum
;convert to decimal

MOV EAX, EBX ;move sum to EAX
MOV EBX, 10 ;divisor is 10
MOV CX,0 sinitialize counter
L3: MOV EDX, 0
DIV EBX ;divide EBX into EDX:EAX
PUSH DX ;DX is reminder, EAX is quotient
INC CcX ;increment count
CMP EAX, O :done?
JG L3 ;no, repeat
;next line
NEW_LINE :
MOV AH, 2 ;output function
;output
L4: POP. DX ;get digit
OR DL, 30H ;convert to ASCII
INT 21H soutput
LOOP L4
MOV AH, 4CH ;return
INT 21H " ;to DOS
MAIN ENDP
C_SEG ENDS .
END MAIN .

We have used an 80386 instruction MOVZX which moves a source
operand into a bigger size register and zero extends teh leading bits. To
assemble 386 instructions, we need to use the .386 directive. However, when
the .386 directive is used, the assembler assumes that the operating mode is
32-bit mode. When we are running programs under the real address mode
of the 386, we have to specify a default mode of 16 bits. This can only be
done with the full segment directives. A segment can be specified with a use
type. For example, to specify a 16-bit use type we wrote D_SEG SEGMENT
USE16 in the program. The use type, USE16 specifies both operand size gnd
offset address size are 16 bits; and all our segments have the use type USE16.

Ghapter 20 Intel’s Advanced Microprocessars 437

Summary-

The 80286 can operate in either real address mode or protected mode.
In real address mode, the 80286 operates like an 8086.

The 80286 uses 24-bit addresses, allowing it a total memory space
of 16 MB. However, in real address mode, it can only access 1 MB.

In protected mode, the 80286 can use 1 gigabytes (GB) of virtual

memory.

. ‘Windows 3 has three modes of operations: real mode, standard
maode, and 386 enhanced mode.

¢ 0OS/2 version 1 supports the 80286 protected mode and version 2
supports the 80386 protected mode.

¢ System services OS/2 are coded as far calls.
e The 80486 is like an 80386 with a floating-point unit.
o. The 50386/804_86 oper'ates as an 80286 in real address mode.

¢ In protected mode, the 80386/80486 supports paging and a
virtual 8086 mode. It can also execute all 80286 instructions.

Glossary

dynamic linking)
extended instruction set

extended memory
global descriptor table

graphical uscr ixltc;-facc,
gui

icon

local descriptor table
register (LDTR)

menu

mousc

multitasking

. privilege levcl

process
protected (address) mode

Linking modules at the time of loading

Set of new instructions first used by the
80186 and 80188 processors, can a.so be
executed by the 80286, 80386, and 80486

processors
Memory above 1 MB
A segment descriptor table that contains

_information about the segments that can

be accessed by all tasks

A user interface that uscs pointers to com-
mands, and special graphics symbols

A graphical element representing a com-
mand or program

A register that holds the address of a local
descriptor table

A set of command selections displayed in
a window

A pointing device used to control cursor
position on a display screen

A technique that allows more than one
program (task) to run concurrently

A measurc of a program’s ability to exe-

“cute 'special commands

A program execution
A mode of operation by the advanced pro-
cessors that protects the memory used by

ase

G "

_ real (address) mode

- segment descriptor

segment descriptor table

segment selector

task
thread

virtual address

virtual memory

window

one program from other concurrent pro-
grams ‘
The mode of operation in which an ad-
dress contained in an instruction corre-
sponds to a physical address
An entry in a descriptor table that de-
scribes a program segment
A table that contains segment descriptors,
there are two kinds of segment descriptor
tables, global descriptor table and local
descriptor table

e value of a segment register when the
processor is running under protectéd mode,
it identifies a segment in a descriptor table

A program unit with its own segments
A subtask of a process

An address contained in an instruction
that does :. 1t correspond to any particu-
lar physical address

Disk memory used by the operating sys-
tem to store segments of a task that are
not needed currently

A rectangular area on the screen

New Instructions -

BOUND
ENTER
INS
INSB

INSW OUTSB
LEAVE OUTSW
MOVZX POPA

ours - ¢ PUSHA

New Pseudo-ops
.286

.38¢€

Exercises

1. Write a procedure for O$/2 that will input a string, and then
echoes the string ten times on 10 different lines.

2. Use 80386 instructions to multiply two 32-bit numbers.

3. Use the 386 instructions given in Appendix I to write a proce‘dure
that outputs the position of the leftmost set bit in the register BX.

Programming Exercises

4. Modify program PGM20_4.ASM so that it will output the sum of
two signed double-precision numbers.

Part Three

Appendices

4BM Display Codes

The IBM PC uses an extended set of ASCII characters for its screen
display. -Table A.1:shows the ASCIL characters. The control characters BS
(backspace), HT (tab), CR (carriage return), ESC (escape), SP (space) corre-
spond to the keys Backspace, Tab, Enter, Esc, and space bar; LF (line feed)

“advances the cursor to the next line, BEL (bell) sounds the beeper, and FF
(form feed) advances the printer to the next page.
- . Table A.2 shows the extended set of 256 display characters. When a
- display code is written to the active page of the display memory, the corre-
sponding character shows up on the screen. To write to the display memory,
-we can use INT.10h functions Sh, OAh, OEh; and 13h. The functions 9h and
OAh write all values to the display memory. The functions OEh and 13h
recognize the control character codes 07h (bell), 08h (backspace), OAh (line
" feed), and ODh (carriage return) and perform the control functions instead
of writing these codes to the display memory.

442 Appendix,A IBM Display Codes

Table A.1 DEC | HEX [CHAR| | DEC | HEX [CHAR| | DEC | HEX [cHAR [DEC | HEX [cHAR

ASCil Code o | oo 32 2 [P |{6s |40 | @ 9% | 60 | °
1| o1 33 | 21| 4 65 [41 | A 97 | 61| a
2 | 02 34 | 22| 7 || 66|42 8 98 |.62 b
3| o3 35 |23 # [[67]°43 [C |['99]e3] c
4| 04 36 | 24 | s 68 | 44 | D 100.| 64 | d
5 | os 37 [25 | % 69 | 45 | E || 101] 65 | e
6 | 06 38 | 26 | & 70 | 46 | F || 102] 66 | f
707 |@ED|| 39 | 27 | - 71 L 47 G ||103]| 67| g
8 | o8 | @[] 40 | 28| ¢ 72 { 48 | H || 104] 68 | K
9 loo |mn|| a | 20]) 73 | a9 | 1 105 | 69 | i
10 | 0A | (P || 42 {28 | * 74 | 4a | 106 | 6A | j
1 | o8 43 | 8 | + 75 | 48 | k || 107] 6B | k
12 [oc | P || 44 | 2¢ | | 76 | ac | L 108 [6C | |
13 {00 [(R || a5 20| - || 77 |40 | M ||109]| 6D | m
14 | oE 46 | 2€ 78 | 46 | N [[110] 66 | n
15 |- 0F a7 | 2F | v 79 |4 [0o || M |6 | o
16 | 10 48 | 30 | 0 go [so | P {[12] 70| p
17 | n 49 |31] 1 gt |'s1 |l Qlf13] 7| aq
18 | 12 so0 | 32 | 2 82 | s2 | R || 11a] 72| ¢
19 | 13 s1 | 33| 3 || 83 |53|s |[ns]|73]s
20 | 14 52 | 34| 4 84 [sa | T [|116] 74 | t
21 | 15 53 | 35 | 5 8s | ss | u |]n7] s u
22 | 16 sa | 36 | 6 86 | s6 | v || 18| 76 | v
23 | 17 55.] 37 | 7 87 | s7 | w |19 77| w
24- | 18 6 | 38 | 8 88 | 58 | X 120 78 | «x
25 |19 s7 | 39 | 9 89 fso | v [lw21]|79] y
26 | 1A 58 | 3A 9% | sa | z ||122]7a] 2
27 | 1B [@€sQ)(| 59 | 38 | ; 91 [s8 | | 123 78 | {
28 | 1C 60 | 3C | < 92 | sc | 124 | 7€ |
29 | 1D 61 | 30 | = 93 [sp |] 125 | 70 |)
30 | 1€ 62 | 3 | > 94 | se | A~ |[126] 7€ | -
31 | iF 63 | 3F | 2 95 | sF [_ 127]

Blank spaces indicate control characters that are not used on the IBM PC.

Appendix A IBM.Display Codes 443
Ta’Sie;A.) oec Trex Jenar] [oec [wex [onan] [pec | ex [crar] [oec | Hex cnar] [DEC | HEX [cHAR
':I:va’rf’c‘tt::g:‘t’ 000 |00 fouanx| | 026 1A | = [fos2]| 3a| & |ore | ae | N |[r04].68n
oo, o1.] @ |07 |18 | ||ds3|3s |5 i|forsfaF o fros] 69} i
‘002 02 | @.{|ozs|1c | . [[osa| 36 |6 |[oso]s0 P |[106f6al]]
003 o3-| ¥ |fozs |10} 1| oss. 37 |7 |losr| st |a {|wr]es|k
004 | 04| ¢ 030-| 1€ | o -||oss |38 |8 ||os2]s2|w 08| 6c | 1
‘005 | o5 | & |03 1F |y {05739 [-9 [foes|s3|s [[rw09f6D|m
006 | 06 | 4 1032 20 ‘S"‘:ncﬂ 058 | 3A <||o8s|sa T 1_10. 6E | n
007 | 07| @ {|oam|2n | 4 |Josof3m | :-fjoes{ss |u |[J1rjeF]o
'608~ o8 | E¥{|o0sa| 22| - |losof3c|< [lose|s6 |V 2] 7| o
oos {09 | O floas}as | 4 [{o67|30 f'= |[087 |87 W ||13|71[q
010/ oa| M ||oss| 2a | g [|o62|3e | > ||oss |8 | x |[[1af 72
on _oé{ g 1io37| 25 | % |losa] ar | 2 |]ose Lso | v ns| 7231 s
12| oc| @ |{o08| 26 | & ||osa| 40 |@ [[oso|sa]z [|ne]7a]r
03| oo |) 039|277 | - |joes|ar | a {Joor|se |t |{17]7s]|v
o] oe.l) |loso} 28 | (|]|oes a2 |8 ||os2|sc| [|ms]e|v
015 | oF | ¥ 1Toar [29 i) |losr |43] c |{oos o |1 {{ne| 77 |w
016'[.10” >_- 042 | 28 | 068 |42 | D ||o09a |*56 | ~ [f120] 78 | «x
or7 | 11| ~a||oa3| 28 | + |os9|as | € |foss|sE | — {12 |79]y
ows |, 127 1 ||oad|2¢ |1, ||G70 | a6 | £ || o096 60 |+ |[|122]7a] 2
o 13l n j|oas |2 | — '0_71;_'4_7_ 6 ||os7|er] 123 78 | {
‘020 | 1a |+ 9 || oa6 |-l o2 las [[foos]'sz|b ||12a|7c|!
oov| 15| s ||oaz 2F.| £ {073 | a9’} i |]oos |63 | ¢ 125 | 10 |)
‘02;2:- 16 “wm-| 048 |30 | 0 {|o7a|aa | s J{100]6a | o [[126] 7€ -
023 [zt [oé?- 31:_- “r-{lors | as |« |01 |es [e ||127| ¥ | A
o2al 18 | 1-1losof 32| 2 [{orefac |t [{102]66 [[f128]80]¢
o2s| 19| | |losi] 33| 3 [|or7{ap|m [[103]67 | g |[120] 81 [0

444 Appendix A IBM Display Codes .

Table A.2.
18M Extended
Character Set

SP means space.

DEC | HEx JcHAR| | DEC | HEX Jc DEC | HEX oec | Hex [cnant | oec | nex]
10| 82| ¢ ||1s6| oc| ¢ |{1e2| 86 [~ |]208p0.| L | 238-|en ?m
120 |83 | a |[ws7joeo| ¥ |[183]e7 | W09 0| T 235 EG."A 5
13288 | a [|1sef oe [Pt [{18aje8 [TF|l21002 | T ||236|ec.| =
133 | 8s | a |{1s9| or | f ([1es]se [T [|2nfo3| L]||237 €0 [@
136 | 86 | & ||160] a0 | 4 || 186]BA || 212 | De | L |[238 | €E | € .
135 |87 | ¢ [{1ev]|ar| i [f1e7]|88 |. W [|23 05 | (1239 |EF [
136 | 88 | ¢ 162| a2 | ¢ ||188]Bc | B [{214]| 06} J|2e0|F0O | =
137 |89 | & ||163]as| 6 |[weofeo | w||zs|or |4 [{aar|p | =
1381 8a | & [[16a| As| B [| 100 BE |] 26 | o8 | |22 2 | 2
v39 |88 | i ||1es| as| & ||sev|er | M1]| 09 | J|l2e3|Fa | s
10 | 8¢ | i 66| A6 | 2 [|192|co | | ||218[DA | |2ea e’ | 7
;141 | 8D | i 167 [A7 | @ 193] cr | 4 |[219]08 [J|{2a5|Fs |/
14288 | A ||168| a8 ¢ |{19a] 2| T {220 DCc| l]296]F6 |
1431 8F | A 1691 a9 | — {|195|ca | - ||22vjop |0 |[aa7}F? | =
vaa o0 | ¢t 170 | AA | 196 | ca | — ||222|0e | O|]248|F8 | °
145 | 91 | 2 [[171] AB | V2 |] 197 cs 4 |23 | OF S llaas jre | @
146 | 92 & 172 | AC [V4 |1 198 | C6 | ju 1]224 1 EO | Q | 1250 | FA ("o
azle3 | 6 [lim3lanl i 199 c7" b j1s|en | b [j2s0]78 N
vas|oa | o ||17af ae|« ||200fc8]| 26 [€2 | rffas2{fc | n
a9 | 95 | o |J1rs| ar] » |J200]co | |22z} e3 | = |[253|FD | 2
150 | 96 u 176 8o’ 202 {ca| J {|228|ea | £ [|25a}FE |]
w197 | o |[v7] e |BE| 203 ce | {229 €5 [o [[255 | FF P
15298 | y {{18] 82 [sl{f20acc|j={l230]es |

15399 | 0 ||19fe3| | |[f2os|co|=[l231]E7 | «

15a1sa| O ||180| Ba|~f|]206]ce | 3||232 €8] o

155 | 95 | ¢ || 181 BS-| =] 207 | ce Llf23|es | &

A -

DOS Commands

In this appendix, we give some common DOS commar.ds.

Note: in the following, two special characters can be used within a
file name or extension. The ? character used in any position indicates that
any character can occupy that position in the file name or extension; The *
character used in any position indicates that any character can occupy that

. position and all remaining positions in the file name or extension.

-BACKUP
' Creates a backup of disk files. -

Example: BACKUP C: A:
Copies the ﬁles in the current C directory toa backup in dlsk A

CLS (Clear Scneen)

‘Clears the display. screen and moves the cursor to the upper left: corner.

' Example cLS

copry
Copies files from one disk and directo}y to another.
Exarpplé 1: CcoPY A:FILE1.TXT b:

Copies the file FILE1.TXT from drive A to drive B. The current drive need
not be specified in the command.. It is also possible to give the copy a dif-
ferent name.

Example 2: €OPY FILEl.TXT B:FILE2.TXT

Copies FILE1.TXT from the disk in the curzcnt drive to FILE2.TXT on ilie
‘disk in drive B.

Example 3: copY A:*.* B:
Coples all files from drive A to drive B. . .

445

446

Appendix 8 DOS Commands

DATE

Changes the date known to the system. The date is recorded as a directory
entry on any files you create. The format is mm-dd-yy. -

Example: DATE 07-14-9C

DIR (Directory)
Lists the directory entricc.
Example 1: DIR

Lists all directory entries in the current drive. Each entry has a file name,
size, and date. The entries in a different directory or different drive can also
be listed by specifying the name of the drive or directory.

Example 2: DIR C*.*
Lists all directory entries of files that begin with C and have any extension.

ERASE (or DEL)

Erases a file. =

Example 1: ERASE FILE1l.TXT

Erases the file called FILE1.TXT from the current drive and directory.
Example :? ERASE *.0OBJ .

Erases all files with an .OBJ extension in the current drive.

FORMAT

Initializes a disk.

Example: FORMAT A:

Formats the disk in drive A. Caution: formatting a disk destroys any previous
contents of the disk. A new disk must be formatted before it can be used.
PRINT

Prints files on the printer.

Example: PRINT A:MYFILE.TXT

Prints the file called MYFILETXT in drive A.

RENAME (or REN)

Changes the name of a file. _
Example: ~ REN FILE1.TXT MYFILE.TXT
Renames the file FILE1. TXT to MYFILE.TXT.

RESTORE

Restores files from a backup disk.

Examnple: RESTORE A: C:

Copies the backup files from disk A to disk C.

Appendix B DOS Commands 447

TIME

Changes the 1ime known to the system. The time is recorded as a directory
entry on any liles you create. The format is hh:mm:ss. The range of hours is

0-23
Exariiple: TIME 16:47:00

TYPE |
Displays the contents of a file on the display screen.

Example: TYPE MYFILE.TXT

Displays the file called MYI‘lLETXT

B.1
Tree-Structured
Directories

DOS versions 2.1 and later provide the capability of placing related
disk files in their own directories.

When a disk is formatted, a single directory called the root directory
is created. It can hold up to 112 files for a double-sided, double- density
5¥4 inch floppy disk.

The root directory can contain the names of other directories called
subdirectories. These subdirectories are treated just like ordinary files; they have
names of 1-8 characters and an optlonal one- to three-character extension.

To illustrate the following commands, we’ll use the following tree-
structured directory as an example.

ROOT
PROGS
PRO1 PRO2
S
d
P1A.EXE

Here, PROGS is a subdirectory of the root directory. PRO1 and PRO2 are
subdirectories of PROGS. P1A.EXE is a file in PRO1.

A path to a file consists of a-sequence of subdirectory names separated
by backslashes (\), and ending with the file name. If the sequence begins
with a \;7 then the path begins at the ROOT DIRECTORY If not, it begins
with the current directory.

CHDIR (or CD)

‘Changes the current directory.

Example 1: cD\
Makes the root directory the current directory of the logged drive.

Example 2: CD\PROGS
Makes PROGS the current directory of the logged dnve

. Example 3: cD PROL
‘After example 2, makes PRO1 the current directory.

Example 4: CD\PRO1

8 Appendix 8 DOS Commands

DOS would reply “invalid directory”. because PRO1 is not a subdirectory of
the root directory. ‘ '

Example 5: CD

This command causes the path to the current directory to be 'display so after
example 3, if C .is the logged drive, .DOS would respond with
" C:\PROGS\PRO1. -

MKDIR (or MD)

Creates a subdirectory on the specified disk.
As examples, we'll create the preceding tree structure on the disk in drive C:

C>CD\
C>MD\PROGS
C>MD\PROGS\PRO1
C>MND\PROGS\PRO2

RMDIR (or RD)

Removes a subdirectory from a disk. The subdirectory must be empty. The
last directory in a specified path is the one removed.
As examples, we'll erase file P1A.EXE and remove all the preceding directories -
from the disk in drive C: '

C>ERASE\PROGS\PRO1\P1A.EXE
C>RM\PROGS\PRO1
C>RM\PROGS\PRO2 -
C>RM\PROGS

BIOS and DOS
Inteyriints

C.1

Introduction In this appendix,.we show some of the common BICS and DOS
interrupt calls. We begin with'interrupt 10h; imerrupts 0 to Fh are not nor-
mally used by application programs, their names are given in Table C.1.

C.2

#ZBIOS Interrupts Interrupt 10: Video

Function Oh:
Select Display Mode
Selects video display, mode.

Input: AH =0h-
‘AL = video mode -
Output: none

Function Th:
Change Cursor Size
Selects the start and ending lines for the cursor.
Input: AH = 1h)
CH (bits 0—4) = starting line for cursor
CL (bits 0—4) = ending line for cursor
_Output: none

450 Appendix C BIOS and DOS Interrupts

Table C.1 interrupts 0 to OFh

interrupt Type Usage

Ch Divide by zcro

th Single step

2h NMI

3h Breakpoint

4h Overflow

Sh PrintScreen

6h Reser red

7h Reserv.d

8h Timer tick

Sh Keyboard
0Ah Reserved
0Bh Serial communicauons (COM?2)
0oCh Serial communications (COM1)
0ODh Fixed disk
OEh Floppy disk
Ofh Parallel printer

Function 2h:

Move Cursor
Positions the cursor.

Input: AH = 2h
BH = page
DH = row

DL = column
- Output: none

Function 3h:
Get Cursor Position and Size
Obtains the current position and size of the cursor.
‘nput: AH = 3h
Bl = page
Output: CH = starting line for cursor
CL = ending line for cursor

DH = row

DL = column
Function Sh: .
Sclect Active Display Page
Input: ~ AH = 5h

AL = page

DH = row

DL = column
Output: none .
Function 6h: !

, Scroll Window Up
. .Scrolls the entire screen or a window up by a specified number of lines.
Input: AH = 6h
AL = number of lines to scroll -
(if zero, enti-e window is blanked)
BH = attribute for blanked lines

.

X Appendix C BIOS and DOS Interrupts 451

CH,CL = row, column of upper left corner of windows
DH,DL = row, column of lower right corner of windows

Output: none -

Function 7h:
Scroll Window Down
Scrolls the entire screen or a window down by a specified number
of lines -
Input: AH =7h
. AL = number of lines to scroll
" (if zero, entire window is blanked)
BH = attribute for blanked lines
.CH,CL = row, column of upper left corner of window
DH,DL = row, column of lower right corner of window

Output: none’

Function 8h:
Read Character and Attribute at Cursor

Obtains the ASCII character and its attribute at the cursor position.
Input: AH =8h" ‘

‘BH = page
Output: AH = attribute

AL = character

Function 9h:
Write Character and Attribute at Cursor

Wirites an ASCII character and its attribute at the cursor position.

" Input: "AH =9%h-

AL = character
BH = pagc :
. BL = atmbute (téxt mode) or color (graphlcs mode)
'CX = count of characters to write
QOutput: none '

Function CAh:
Write Character at Cursor
Writes an ASCIl character at the cursor position. The character re-

" ceives the attribute of the previous character at that posmon

Input AH = 0Ah"
AL = character
BH = page)

. CX = count of characters to write
Output: none

Function 0Bh:
Set Palette, Background, or Border
Selects a palette, background color, or border color.
Input: To select the background color and border coior
AH = OBh o
‘BH =0°
*BL "= color
'To select paiette (320 x 20C four-color mode)
AH = 0Bh
‘BH =1
BL = palette

. Output: ~ nonc_

452 Appendix C BIOS and DOS interrupts

Function OCh:
Write Graphics Pixe!

Inpui: AH = 0Ch
AL = pixel value
BH = page
CX = column
DX = row
Output: none

Function 0Dh:
Read Graphics Pixel
Obtains a pixel value.

Input: AH = ODh
BH = page
CX = column
DX = row
Output: AL = pixel value

Function OEh:

Write Character in Teletype Mode

Writes an ASCII character at the cursor position, then increments
cursor position.

Input: AH = OLh
AL = character
BH = page
) - BL = color (graphics mode)
Output: none

Note: the attribute of the character cannot be specified.

Function OFh:

Get Video Mode

Obtains current display mode.

Input: ~ © Al = OFh

Output: AH = number of character columns
AL = display mode
BI{ = active display page

" Function 10h, Subfunction 10h:
Set Color Register
Scets individual VGA color register.
Input: AH = 10h
AL = 10h
BX = color register
CH = green value

ClL. = blue value
_ DH = fed value
Qutput: none

Function 10h, Subfunction 12h:
Set Block of Color Registers
Sets a group of VGA color registers.

Input: AH = 10h
JAL = 12h
BX = firstcolor register

"CX = number of color registers
ES:DX = segment:offset of color table

Output: none

Appendix C BIOS and DOS interrupts 453

Note: the table consists of a group of three-byte entries correspond-
ing to red, green, and blue values for each color register.

Function 10h, Subfunction 15h:
Get Color Register
Obtains the red, green, and blue values of a VGA color register.
Input: AH=10nh =~ 7

: AL =15h

" BX = color register
Output: CH = green value

< ‘3 " CL = blue value
DH = red value

Function 10h, Subfunction 17h:
Get Block of Color Registers
Obtains the red, green, and blue values of a group of VGA color registers.
Input: AH = 10h- - ’ '
: " “AL =17h* i

BX = first color register

CX = numbecr of color registers

ES:DX = segment:offset of buffer to receive color list
Output: ¢ ES:DX = segment:offset of buffer
Note: the color list consists of a group of three-byte entrics corre-
sponding to red, green, and blue values for each color register.

-

Interrupt 11h: Get Equipment Configuration
5 -
Obtains the equipment list code word.
Input: . none .
,Output: . AX = cquipment list code word
(bits 14-15 = number of printers installed,
13 = internal modem,
12 = game adapter,
9-11 = number of serial ports,
8 is reserved, -
6-7 = number of floppy disk drives,
4-5 = initial video mode,
2-3 = system board RAM size, original PC
2 used by ’'S/2-
I = math coprocessor,
0 = floppy disk installed)

Interrupt 12h: Get Conventional Memory Size
Returns the amount of conventional memory.

Input: none
Output: = AX = memory size (in KB)

Interrupt.13h: Disk 1/O

Function 2h:

- Read Sector:
- Reads one or more sectors.
Input: AH=2h

~1 = number of s¢ctors

454

Appendix C BIOS and DOS Interrupts

CH = cylinder

CL = sector

DH = hcad

DL = drive (0-7Fh = floppy disk, 80h-FFh = fixed disk} _
ES:BX = segment:offset of buffer

Output:
If function successful
CF = clear
AH =19

AL = number of sectors transferred
If functicn unsuccessful

CF =set

Al = crror status

Function 3h:
Write Sector
Writes onc or more settors.
Input: AH = 3h
AL = number of sectors
BX = firstcolor register
CH = cylinder
CL = sector
DH = head
DL = drive (0-7Fh = floppy disk, 80h~}FFh = fixed disk)
ES:BX = segment:offset of buffer

Output: If function successful
: CF = clear
AH =0

AL = number of sectors transferred
If function unsuccessful

CF = st

All = error status

Interrupt 15h; Cassette I/O and Advanced Features
for AT, P5/2

Function 87h:
Move Extended Meniory Block
Transfers data between conventional memory and extended memory.
Input: AH =87h
CX = numuer of words to move)
ES:SI = scyment:offset of Global Duscriplor Table

Output: If function successful
CF = claar
Al =0

AL = number of sectors transferred
1f function unsuccessful :

CF = set

AH = error status

Function 88h:

Get Extended Memory Size

Obtains amount of extended memon

Input: AH = 88h

Output: AX = extended memory size (in KB)

Appendix C BIOS and DOS Interrupts

Interrupt 16h: Keyboard

Function Ch: |
Read Character from Keyboard
Input: AH = Oh .,
Qutput: AH,= keyboard scan code
; AL. = ASCII character
Function 2h:
Get Keyboard Flags -
Obtaihs key tlags that describe the status of the function eys.
Input: AH = 2h .
Output: AL, =ﬁflq‘gs'_:
Bit ifset’
-Insert on .
Caps Lock on ».
Nurn Lock on
Scroll Lock on
Alt key is down
Ctrl key is down
left shift key is down
" .. right shift key is down
‘ . %

OC—-NWBARUNGON

Function 10h: < -

Read Character from Enhanced Keyboard
Input: AH = 0Oh
Output: At = keyboard scan code
AL = ASCII character .
Note: this function can be used to return scan codes for control
keys such as'F11 and F12.

Interrupt 17h: Printer

Function Oh:)
" Write Charactér to Printer
Input: AH =0
: - .AL = character
DX = printer numbét

Qutpat: AH = status

Bit If Set

7 printer no: busy ,
6 printer acknowledge
S - out of paper

4. printer selecied

3: VO error

2 unused

1 unused

9] printer timed out

455

456 Appendix C BIOS and DOS Interrupts

<3
DOS Interrupts Interrupt 21h
Function Oh:

Program Terminate
Terminates the execution of a program.

Input: AH = Oh
CS = segment of PSP
Output: none

Function 1h:

Keyboard input

Waits for a character to be read at the standard input device (un-
less one is ready), then echoes the character to the standard out-
put device and returns the ASCII code in AL.

Input; AH = 01h

Output: AL = character from the standard input device

Function 2h:

Display Output

Outputs: the character in DL to the standard output device.

Input: AH = 02h '
DL = character

Qutput: none

Function Sh:
Printer Output .
Outputs the character in DL to the standard printer device.

Input: AH = 05h
DL = character
Output: none

Function 09h:
Print String
Outputs the characters in the print string to the standard output device.

Input: AH = 0%h
DS:DX = pointer to the character string ending with ‘S’
Output: none

Function 2Ah:

Get Date
Returns the day of the week, year, mmonth and date.
Input: AH = 2ah .

Output: AL = Day of the week (0=SUN, 6=SAT)
CX = Year (1980-2099)
DH = Month (1-12)
DL = Day (1-31)

Function 2Bh: -

Set Date
Sets the date.
Input: - AH = 2Bh"-

CX = year (1980-2099)
DH = Imonth (1-12)
DL ='day (1-31)

Appendix C BIOS and DOS Interrupts 4%

Output: AL = 00h, if the date is valid
1 FFh, if the date i} not valid

Function 2Ch:
Get Time . '
. Returns the time: hours, minutes, seconds and hundredths
of seconds.
Input: -AH = 2Ch
‘Output: - CH = hours (0-23)
. CL = minutes (0-59)
DH = seconds (0-59)
DL = hundredths (0-99)

Function 2Dh:
Set Time
Sets the time. e
Input: AH = 2Dh
CH = Hours (0-23) .
DH = Seconds (0-59)
. CL = Minutes (0~-59)
; DL = Hundredths (0-99)
Output: AL = 00h if the time is valid
FI'h i1 the time is not valid
Function 30h:
Get DOS Version Numbsr
Returns the DOS version number.
Input: At = 30h
Output: BX = 00001
CX = 0000H
- AL = major vetsion number
All = minor version number

Function 31h:
- Terminate Proccss and Remain Resident
Terminates the «viient process and attempts to set the initial allo-
cation block to the m..mory size in paracraphs.
Input: AH = 3L .
. Al. = rc.urn code
DX = memory size in patagaiphs
Output: none

Function 33h:
Ctrl-break Check .
Set or gt the state Hf RLAV -Ctri-break Locking).
Input: All = 3130 .
AL = 00h, o request carrent state
Olh, to set the current state
DL = 00h, to set current state OFF
Olh, to set current statc ON |
Output: DL = The current state (00hr=OFF, 01h=0ON)

. Function 35h:

Get Vector
Obtains the address in an interrupt vector.
Input: AH =35h

458 Appendix C BIOS and DOS Interrupts

AL = interrupt number
Output: ES:BX = pointer to the interrupt handling routine.

Function 36h:
Get Disk Free Space
Returns the disk free space (available clusters, clusters/drive,
bytes/sector).
Input: AH = 36h
DL = drive (O=default, 1=A)
Output: BX = Available clusters
DX = clusters/drive
CX = bytes/sector
AX = FFFFh if the drive in DL is invalid,
otherwise the number of sectors per cluster

Function 39h:
Create Subdirectory (MKDIR)
Creates the specified directory.

Input: AH = 3%h .
DS:DX = pointer to an ASCIIZ string
Output: AX = error codes if carr flag is set

Function 3Ah:
Remove Subdirectory (RMDIR)
Removes the specified directory.
Input: AH = 3Ah
DS:DX = pointer to an ASCIIZ string
Output: AX = crror codes if carry flag is set

Function 3Bh:
Change the Current Directory(CHDIR)
Changes the current directory to the specified directory.
Input: AH = 3Bh

) DS$:DX = pointer to an ASCIIZ string
Output: AX = crror codes if carry flag is set

Function 3Ch:
Create a File (CREAT)
Creates a new tile or truncates an old file to zero length in prepa-
ration for writing.
Input: ‘AH = 3Ch

DS:DX = pointer to an ASCIIZ string

CX = attribute of the file
Output: AX = error codes if carry flag is set

16-bit handle if carry flag not set

Function 3Dh:

Open a File
Opens the specified file.
Input: AH = 3Dh

DS:DX = pointer to an ASCIIZ path name
AL = access Code
Output: AX = crror codes if carry tlag is sct
16-bit handle if carry flag not set

Appendix C BIOS and DOS /nten;upts 459

Function 3Eh:
Close a File Handle
Closes the specificd file handle.
Input: AH=3Eh = |
BX = file handle returned by opcn or create
~Output: - AX = error codes if carry flag is set
none if carry flag not set

Function 3Fh:)
Read from a File or Device
Transfers the specified number of bytes from a file into a buffer location.
Input: =~ AH = 3Fh
BX = file handle
DS:DX-= buffer address
CX = number cf bytes to be read
. Output:: AX = number of bytes read
error codes if carry flag set

Function 40h:
" Write to a File or Device
Transfers the spccmed number of bytes from a buffer into a speci-
fied file. .
Input: - .AH = 40h

BX = file handle

DS:DX = address of the data to write

CX = number of bytes to be write
Output: AX = number of bytes written

error codes if carry flag set

Function 41h: .
Delete a File from a-Specified Directory (UNLINK)
Removes a directory entry associated with a tile name.
Input: AH = 41h
: DS:DX = address of an ASCIIZ string
Output: AX = error codes if carry flag sct

none it carry flag not set

Function 42h:
Move File Read Write Pointer (LSEEK)
.Moves the read/wiite pointer according to the method specified.
Input: AH = 42h

CS:DX = distance (offset) to move in bytes

“AL = method of moving (0,1,2) .
) BX = file handle
Output: AX = crror codes if carry flag sel

DX:AX = new pointer location if carry flag not set

Function 47h:
.Get Current Directory
Plagcs ‘the full path name (startmb from the root directory) of
the current dxrcctory for the specmed drive in the area pointed
to.by DS:SI.
Input: AH ="47h"

DS:S1 = pointer to a 64-byte-user memory area

DL = drive number (0=default, 1=A, etc.)

error codes if carry flag set

460

Appendix C BIOS and DOS Interrupts

Output: DS:SI = filled out with full path name from the root if
carry is not set
AX = error codes if carry flag is set

Function 48h:
Allocate Memory
Allocates the requested number of paragraplis of memory.
Input: AH = 48h
BX = number of paragraphs of memory requested
Output: AX:0 = points to the allocated memory block
AX = error codes if carry flag set
BX = size of the largest block of memory available (in
paragraphs) if the allocation fails

Function 45h:
Free Allocated Memory
Frees the specified allocated memory.

Input: AH = 49h
ES = segment of the block to be returned
Output:* AX = error codes if carry flag set

none if carry flag not set

Function 4Ch:
Terminate a Process (EXIT)
Terminates the current process and transfers control to the invoking

process.
Input: AH = 4Ch

AL = return code
Output: none

Interrupt 25h: Absolute Disk Read

Input: AL = drive number
CX = number of sectors to read
DX = beginning logical sector number
DS:BX = transfer address
Output: If successful CF = 0
If unsuccessful CF = 1 and AX contains error code

Interrupt 26h: Absolute Disk Write

Input: Al. = drive number
CX = number of seciors to read
DX = beginning logical sector number-
DS:BX = transfer address
Output: If successful CF =0
If unsuccessful CF = 1 and AX contains error code

Interrupt 27h: Terminate but Stay Resident

Input: DX = offset of beginning of free space,
segment is with respect to PSP.
Output: none

Appendix

MASM and LINK

Options

D.1
MASM

The MASM assembler translatcs an assembly language source file
into o machine language object file. 1t generates three files, as shown:

SOURCE FILE
|

_MASM

-— ° . -
OBJECT FILE ' LIST FILE CROSS-REFERENCE FILE

The object file contains the machine language translation of the as-
sembly language source code, plus other information needed to produce an
executable file.

The list file is a text file that gives assembly language code and the
corresponding machine code, a list of names used in the program, error
messages, and other statistics. It is helpful in debugging.

The cross-reference file lists names used in the program and line num-
bers where they appear. It makes large programs casier to follow. As generated,
it is not readable; the CREF utility program may be used to convert it to a
legible form. ’

461,

462 Appendix D MASM and UNK Options

MASM Command Line
For MASM version 5.0, the most general command line is

MASM options source_file, object_file, list_file,cross-
ref file

MASM 4.0 has the same command line, except that the options
appear last. : o

The default extension for the objéct file is .OB]J, for the listing file it
is .LST, and for the cross-r:ference file it is .CRF.

For example, suppose MASM is on a disk in drive C, source file
FIRST.ASM is on a disk in drive A, and C is the logged drive. To create object
file FIRST.OBJ, listing file FIRST.LST, and cross-reference file FIRST.CRF on
drive A, we could type ’

~C>MASM A:FIRST.ASM,A:PIRST .OBJ,A:FIRST.LST, A:FIRST.CRF

A simpler way to get the same result is

C>MASM A:FIRST, A:,A:,A:

A semicolon instead of a comma on the MASM command line tells
the assembler not to generate any more files. For example, if we type

C>MASM A:FIRST,A:;

Then MASM will generate only FIRST.OBJ. If we type

C>MASM A:FIRST,A:,A:;

Then we get FIRST.OBJ, FIRST.LST, but not FIRST.CRE.
It's also possible to Jet MASM prompt you for the files you want. For
example, suppose we want .OBJ and .CRF files only.

Appendix D MASM and LINK Options = 463

.

C>MASM A:FIRST))
Micrésoﬁt (R) Macro Assembler Version 5.10 .
Copyright (C) Microsoft®Corp 1981, 1988. All rights reserved.

Object filename [FIRST.OBJ): A:<Enter>
Source listing [(NUL.LST]: <Enter>
Cross-reference [NUL.CRF]: A:FIRS!_I‘ <Enter>‘

©50140 + 234323 Bytes symbol space free

. 0 Warning Errors
0 Severe Errors

The first respbnse just given means that we accept the name
FIRST.OB] for the object file. The second one means that we don’t want a
listing file (NUL means no.file). The third one means we want a cross-refer-
ence file called FIRST.CRF. . .

Options

The MASM options control the operations of the assembler and the
format of the output files. Table D.1 gives a list of some commonly used
ones. For a complete list, see th¢ Microsoft Programmer's Guide.

Several options may be specified on a command line. For example,

C>MASM /D /W2 /2 /21 FIRST; -

Table D.1 Some MASM Options

Option Action
/A Arrange so. rce segments in
alphabetical-order.
/C Create a cross-reference file.
/0 Create pass 1 listing (see below).
ML Make names case sensitive.
R Accept 8087 floating-point insiructions.
) 57 Leave source segments in original order.
W(0112} .= Set error level display: (default = 1):
0 = illegal statements
1 = ambiguous or questior able
N statements

2 = statements that may produce
inefficient code

Display the lines containing errors.

Write' symbolic information to the
. object file (use with CODEVIEW).

LR

464 Appendix D MASM and LINK Optioris

A MASM Demonstration

To show what the MASM output files ook like, the following program
SWAP.ASM will be assembled. It swaps the content of two memory words.

Program Listing PGMD_1.ASM
TITLE PGMD_1l: SWAP WORDS
.MODEL SMALL .
.STACK 100H
.DATA
WORD1 DW 10
WORD2 DW 20
.CODE
MAIN PROC
MOV AX,@DATA
MoV DS, AX
MOV AX, WORD1
XCHG AX,WORD2
MOV WORD1,AX
MOV AH, 4CH
INT 21H
ENDP
END MAIN

Microsoft
Copyright

47358

-

(R)
(<)

C>MASM A:PGMD_1,A:,A: A:

Macro Assembler Version 5.10
Microscft Corp 1981, 1988. All rights reserved.

390893 Bytes symbol space free

0 Warning Errors
0 Scvere Errors

The listing file is shown in Figure D.1.

C>TYPE A:PGMD_1.LST

Down the left side of the listing are the line numbers. Next we have a column
of offset addresses (in hex), rclative to stack, data, and code segments. After
that comes the machine code translation (in hex) of the instructions.

Two-Pass Assembly and the SYMBOL TABLE

MASM makes two passis through the source file. On the first pass,
MASM checks for syntax errors and creates a symbol table of names and thdir
relative locations within a segment. To keep track of locations, it uses a
location counter, The location counter is reset to O at the beginning of a

/uxxxxﬁxt?xAdASA(andlﬂVk(iﬂiws .

0002 0014

0000
0000
10 0003 8E
11 0005 Al
12 0008 87 06.0002 R
13 000C A3 0000 R
14 O00OF B4 4C
i5 0011" cD 21
16 0013
17

1
2
3
4
5. 0000 000A
6
7
8
9

B8 — R .
o8- .
0000 R

PGMD _1: SWAP WORDS
Segments and Groups:
. 1 N

D §

N a m e -...\.l
DGROUP

_DATA.

STACK.
_TEXT

Symbols:

N ame
MAIN.
WORD1
WORD2

¥CoDE

@CODESIZE

acpPU. .. .

@DATASIZE

QFILENAME

@VERSION.
17 Source Lines
17 Total Llines
20 Symbols

O:Narning Errors
0 Severe Errors

L

" MAIN

. .MODEL

. STACK

.-DATA
WORD1 -
HWORD2

:HAIN o

Microsoft (R) Macro Assembler Version.5.10- :9/6/91 00:43:35

Page-1
TITLE- PGMD_:1:SWAP. WORDS

SMALL

100H"

DW 210

DWw . 20

" .CODE .
‘PROC .

JMOV AX, @DATA
., MOV | DS,AX"i
.-MOV © AX,WORD1
. XCHG AX, WORD2
MoV WORD1, AX
MOV . AH,4CH
,’_IN_TY; 218 -
ENDP

MAIN .

END

Microsoft. (R). Macro Assembler Version-5.10°

9/67/91' 00:43:35
.Symbols~1.

Length ¢ ‘Align_CombineClass

GROUP

—~0004 --—WORD-

0100
0013

Type

N PROC
L WORD
L WORD

TEXT
TEXT
TEXT
TEXT
"TEXT
TEXT. -

47358 +, 390893 Bytes symbol space free

PUBLIC'DATA’

PARA . STACK '’STACK'
WORD .PUBLIC'CODE’
Value Attr

0000 <+ TEXT Length = 0013
0000 _DATA

0002 _DATA

_TEXT

o]

0101h

0

PGMD 1

510

Figure D.1 PG LLST

L H

466 Appendix D MASM and LINK Options

* segment. When an instfuction is encountered, the location counter is

increased by the nuinber of bytes needed for the machine code of the instruc-

~ tion. When a name is encountered, it is entered in the symbol table along with

the iocation counter’s value. The symbol table appears near the bottom of the
ST file; in the preceding example, the symbols are MAIN, WORD], and
WORD2. The MASM /D option causes the..LST file to include pass 1 error
messages. Whether these are actually errors is determined in pass 2.

On the second pass, MASM completes error checking and machine
codes the instructions, except for those instructions that refer to names in
other object modules. The .LST file is also created.

The reason MASM needs two passes to assemble a program is that
some {nstructions may refer to names that appear later on in the source file.
These instructions can be machine-coded only after their relative locations
have been determined from the symbol table. '

The object file (PGMD_1.0B]) that MASM creates is not executable.
The final addresses of the variables need to be deternined by the LINK pro-
gram (see later description). In the .LST file, thesc addresses are marked by
a “R” {relocatable) symbol (lines 9, 10, 11, 12, 13). :

.

The Cross-Referance File

The cross-reference file (here PGMD_1.CRF) contains information on
names—where they are defined and the line numbers where they appear in
the .LST file. The .CRF iile is not printable; the CREF program, on the DOS
disk, converts it to a .REF file that has an ASCII format:

[
[

L

?GMD_1: SWAP WORDS

Symbol Cross Reference

@CPU
GVERSION .

CODE

CATA
DGROUP

MAIN
STACK.

WORD1 .
WCRDZ2.

CATA. -

Microsoft Cross-Reference Version 5710 Fri Sep 06 01:33:52 1991
(# definition, + modification) Cref-1
1#

14
9
4 t
9)
8t 16 17
3 43
S# 11 13+
64 ‘12+
a1
C T

_TEXT.

11 Symbols

fiqure D.2 PGMD_1.REF

e

‘Appendix D MASM and LNK Opticns” 467

‘C>CREF - A:PGMD_1;

Microsoft. (R) Cross- -Reference Utility*Version 5.10
Copyright. (C)-, M:.crosoft Corp . '1981-1985, £°1987. All rights reservec.

11 Symbols

The output is the file PGMD_1-REF, which can be printed by using the TYPE
command (Figure D.2).

C>TYPE PGMD_1.REF

D.2
LINK

The)ob of.the LINK program is to link object files (and possibly
library files) into’a smgle executable file’ To do this, it must resolve reference
'to names used in-one modulé but defined in another. The mechanism foi
doing this is explained in Chapter 14. LINK must.be. used-even -1f there is
only one object file.

The input to LINK is oné’or more object and library files, and the
output is a run file and an optional loadmap file, as shown:

Object file(s) Library file(s)
N
~. 7
* '/
. Link
e ~

- \‘

Run file Loadmap file

The run file is an exccutable machine language program. The loadmap file
gives the size and relative location of .the-program segments.

.LINK Command-Line
For LINK version 5.0, the most gencu! corymand line is

LINK options ’object_file 1ist,run_file, loadmap_file, li-
brary list» -) .

The only option you will be likely to use is /CO, which causes extia
information for CODEVIEW to be included.

The object_file_list is a list of object files to be linked. It begins with
the name of the object file containing the main program; the other cbject
files usually contain procedures that are called by the main program and by
each other. The file names are separated by blanks or “+"

468 Appendix O MASM and LINK Options

The nun_file his an .EXE extension. It is an executable file unless the
program is a .COM tonnat-program, in which case one more step Is needed
to produce an execulable file...COM programs are discussed in Chapter 14.

- The library_list cunsists of library flles, if any, separated by blanks or

* “+". Library files usually have a .LIB extension; and they often contain stan-

dard routines used by many programs, such as I/O routines. An example
appears in Chapter 14. ’ -

For example, suppose LINK Is on a disk in drive C and the flles to
be linked are in drive A, The main cbject file is FIRST.OB]J, other object files
are SECOND.OBJ and THIRD.OBJ." To .create a run file FIRST.EXE and a
loadinap file FIRST.MAF,-we could type

CoLINK. A:FIRST+SECOND+THIRD, A:FIRST, A:FIRST;

or just

C>LINK A:FIRST+SECOND+THIRD,A:.&:;

"The semicolon at the.end mcaﬁs that there are no library files. As with
MASM, it's possible.to.run LINK interactively:

C3LINK. FIRST4+SECOND+TRIRD

Microscft (R’) Overlay Linker Version 3.64
Copyricpt (C) Micrcsoft Corp 1933-1988. All rights
reservod., :

Run File [(FIRST.EXE]: <Enter>
Ligt File [NUL.MAF} A:FIRST <Enter>’
Librar.-2s: [.LIB) <Enter>

The first response means that we accept the name FIRST.EXE for the run file.
The second response means we want to call the loadmap file FIRSTMAP. The
third response mcans that there are no library files.

'A LINK Demonstration
Let’s link PGMD_1 above::

Appendix D. MASM and LINK Options 469~

" COLINK A:PGMD:1,A:,A:;

Microsoft - (R) Overlay i.inker Version 3.64-
Copyright . (C) Microsoft Corp "1883-1988. All rights

reserved. .

c>

Here is the loadmap file:

C>TYPE “A:PGMD. 1 MAP™

Start Stop Length Name Class
00000H 00012H .00013H . TEXT = CODE

00014H '00017H 00004H. _DATA~ DATA .

00020H 0011FH 00100H STACK® STACK

Origin : Group

0001:0° DGROUP..

Program-entry point-at-.0000:0000"

.+ The file gives the relative size and location of the program segments.

Appendix

DEBUG and
CODEVIEW

E.1
Introduction o This appendix covers the DEBUG and CODEVIEW debuggers. DE-
, BUG is available on the DOS disk, and CODEVIEW comes with the Microsoft
Macro Assembler, version 5.0 or later. DEBUG is a primitive but utilitarian
" program with a small, easy-lo-learn command set. CODEVIEW is a much
more sophisticatcd program that rnay be used to debug Pascal, BASIC, FOR-
TRAN, C, or assembly language code. The user can simultancously view
source code, registers, flags, and selected variables.
E.2 . C e : :
DEBUG Since midst of the DEBUG commands will work in CODEVIEW, you

should read the sections on DEBUG even if you will ultimately be using
.. CODEVIEW. Table E.1 summarizes the most useful DEBUG commiands. For
a complete list, see the DOS user’s manual.

A Debué Demonstration

To demonstrate the DEBUG commands, we'll use PGM4_2.ASM, ~
which displays “HELLO!” on the screen.

Program Listing PGMJ4_2.ASM:

TITLE PGM4_2: PRINT STRING PROGRAM
.MODEL SMALI,

.STACK 10CH

471

472 Apperdix E DEBUG and CODEVIEW

.DATA
MSG DB *HELLO! S’
.CODE
MAIN PROC
;initialize DS

MOV AX, @DATA

MOV DS, AX ;initialize DS
;display message
LEA DX,MSG ;get message
MOV AH, 9 ;display string function
INT 21h ;display - message
;return to DOS
MOV AH, 4CH
INT 21h . ;DOS exit
MAIN ENDP
END MAIN

After assembling and linking the program, we take it into DEBUG.
(the user’s response appears in boldface).

C>DEBUG PGM4_2.EXE

DEBUG comes back with its “-” command prompt. To view the registers,
type NRJI

-R

AX=0000 BX=0000 CX=0121 DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
DS=0EFB ES=0EFB SS=0F0B CS=0r1C 1IP=0000 NV UP DI PL NZ NA PO NC
0F1C: 0000 B81BOF) MOV AX,OF1B

.

The display shows the contents of the registers in hex. The third line of the
display gives the segment:offset address of the first instruction in the program,
along with its machine code and assembly code. The letter pairs at the end of
the second line are the current settings of some of the status and control flags.
The flegs displayed and the symbols DEBUG uses are the following:

~ Flag _ Clear (0) Symbol Set (1) Symbol

Overflow Flag NV oV
Direction flag up DN
Interrupt flag o]}) El

Sign flag PL NG
Zero flag NZ ZR
Auxiliary carry flag NA . AC
Parity flag PO ' PE

Carry flag NC cY

Appendix £ DEBUG and CODEV)EW

Yable E.1 DEBUG Commands -

Optional parameters are enclosed in curly brackets. All constants are he:adecimal.

Command

D {start {end}} {range}

- Examples:
D 100

D CS:100 120
D

E start {list}

Examples:
EDSOABC

- EES:100 1 2 "ABC”
¥ .

E25

G {=start} {addr1 addr2 . . addrn}
Examples:
G

G =100
G 100 300 200

.

G =100 150

L address {drive start_sector end_sector)

" Examples: ‘i
LDS:1000°C 18
L 8FDO:0 1 IZA ;B
L DS:100 o
N filename

Example:~
N mytile,

Q

R {register}
Exampies: |,
R ;

RAX

Action:
Dump bytes in hex format

Dump 80h bytes starting at DS:100h
Dump bytes from CS:100h to S:120h

Dump 80h bytes starting at DS:last+1
where last is the last byte displayed

- Enter data in-list beginning at start

Enter Ah,Bh,Ch in bytes DS:0,05:1,D05:2

Enter 1 in ES:100h; 2 in ES:101h, 41h
in £5:102, 42h in £5:103, 43h in
ES:104h

£nter bytes interactively starting at
DS:25. Space-bar moves to next byte,
Return terminates

" Go (execute) at start, with breakpoints

at addr1, addr2,.. . addrn

Execute at CS:IP to completion -
Execute at CS:100h to completicn -

Execute at CS:IP, stop of first of
breakpoints CS:100h, CS:300h, or
CS:200h encountered -

Execute at CS:100h, breakpoint at
CS:150h

Load absolute disk sectors or named
program (see-N command)

Drive specified by number (0 = A1 =
B 2=C, etc)

Load sectors Ch to 18h from the disk

in drive A at DS:100h

Load sectors 2Ah to 3Bh from the disk
in drive B at address 8FDOh

Load named file'at Ds:100h

Set current filename for L and W
commands -

Set loadAwrite name to myfile
Quit DEBUG and return to DOS

Display/Change contents of register

-Displéy ;egisters and flags

Display AX and change contents if
desired

473.

474

Appendix £ DEBUG and CODEVIEW

T {=start} {value}

Examples:
T

T =100
T=1005
T4

U {start {end}} {range}
Examples:
U 100

U CS:100 110
U 200L 20

U

W (start}

Example:
W 100

Trace “value” instructions from start

Trace the instruction at CS:IP

Trace the instruction at CS:100h

Trace 5 instructions starting at CS:100h
Trace 4 instructions starting at CS:IP

Unassemble data in instruction format

Unassemble about 32 bytes starting at
CS:100h

Unassemble from €5:100h to CS:110h

Unassemble 20h instructions starting at
CS:200h

Unassemble about 32 bytes starting at
last+1, where last is the last byte
unassembled

Write the BX:CS bytes to file (see N
command)

" Wirite the BX:CX bytes stored at

CS:100h

To change the contents of a register—for example, DX—to 1ABCh, type

SI=0000 DI=0000
NV UP D1 PL NZ NA PO NC

-RDX

DX 0000

:1ABC
DEBUG responds by displaying the current content of DX, then displays a
colon and waits for the us to enter the new content. We enter 1ABC and
press the Enter key (DEBUG assumes that all numbers the user types aret
expressed in hex, so no “h” is needed). To retain the current content of DX,
wi: would just hit the Enter key after the colon.

To verify the change, we can display the registers again.

-R

AX=0002) BX=00C0 C¥%=0121 DX=1.BC SP=0100 BP=0000

DS=0EFE ES=0LI'B SS=0F0B CS=0F1C IP=0000

OF1C: (00 BE1DOF MOV AX,OF1B

] Now let's trace down to the INT 21h.

Appendix E DEBUG and CODEVIEW 475

-T
AX=0F1B BX=0000 CX=0121 DX=1ABC SP=0100 BP=0000 SI=0000 DI=0000
DS=0EFB ES=0EFB SS=0F0B CS=CF1C IP=0003 NV UP DI PL NZ NA PO NC

OF1C:0003 BEDS MOV DS, AX

-T ’ BERT I 0]
" AX=0F1B BX=0000 CX=0121 DX=0002 SP=0100 BP 0000 SI1=0000 DI=0000
DS=0F1B ES=0EFB SS=0FOB CS=0F1C IP="239% NV UP DI PL NZ NA PO NC

OF1C:0009 B409 , MOV AH, 0°

Note that DEBUG seemingly “skipped” the instruction LEA DX ,MSG. Actu-
ally, that instruction was executed (we can tell because DX has new contents).
DEBUG occasionally executes an instruction without pausing to display the
registers.

_T .
AX=091B BX=0300 CX=0121 DX=0002 SP=0100 BP=0000 SI=0000 -DI=0000
DS=0F1B ES=0EFB SS=0F0B CS=0F1C IP=000B NV UP DI PL NZ NA PO NC

CF1C:00C0B CD21 INT 21 &

If we were to hit “T” again, DEBUG would start to trace INT 21h, which is
not what . we'.want.

- Fr(;ln.‘tl1o.last register display, we sce that INT 21h is a two-byte
instruction. Since 1P’ is currently 000Bh, the next instruction must be at
000Dh, and we can set up a breakpoint there:

-GD
HEL.O! . _ . :
AX- (704 BX=0030 CX=0121 DX=0002 SP=0100 BP=0000 SI=0000 DI=0000
iB ES=0EFB SS=0F0QR CS-—~CF]C'_IP=000D NV UP DI PL NZ NA. PO NC
OF:¢:000D ©4:C MOV AH,4C

The INT 21h. function 9, displays “HELLO!" and cxccutnon stops at the break-
point 000Dh. To finish execution, just type “G”: =

-G
Program. ter?nihaie_d ‘no;mafly

e R

L

This message indicates the program has run to completion. The program
must be reloaded to be executed again. So let’s leave DEBUG.

476. Appendix E' DEBUG and CODEVIEW

C>

To demonstrate the U command, let’s reenter DEBUG and use it to list our

program:

C>DEBUG PGM4_2.EXE.

-u

0F1C:0000 B81BOF . MOV AX,O0F1B

0F1C:0003 8EDS MOV DS, AX

OF1C:0005 8D160200 LEA DX, [0002)

O0F1C:0009 B409 . MOV AH,09

0F1C:0008B CD21 INT 21

OF1C:000D B44C MOV AH, 4C

OF1C:00QF CD21 INT 21

0F1C:0011 01SBES ADD [BP+DI-18],BX

|y OF1C:0014 3BEE CMP BP,SI

OF1C:0016 EBBAF3 CALL F3A3

0F1C:0019 E97E08 JMP 089A

OF1C:001C 8D1ESEO9Y LEA BX, [098E)
DEBUG has unassembled about 32 bytes; that is, interpreted the contents of
these bytes as instructions. The program ends at 000Fh, and the rest is
DEBUG's interpretation of the garbage that follows as assembly code. To list
just our program, we type

-U 0 F

OF1C:0000 B81BOF MOV AX,OF1B

OF1C:0003 BEDS8 MOV DS, AX

OF1C:0005 8D160200 LEA DX, [0002]

.0F1C:0009 B409 MOV AH,09

OF1C:000B CD21 INT 21

OF1C:000D B44C MOV AH, 4C

OF1C:000F CD21 INT 21

In the unassembily listing, DEBUG replaces names by the segments or offsets -
assigned to those names. For example, instead of MOV AX,@DATA we have.
MOV AX,01FB. LEA DX ,MSG becomes LEA DX,{0002] because 0002h is the
offset in segment .DATA assigned to MSG., ~

To demonstrate the D command, let’s dump that part of memor
that contains the message “HELLO!”. First, we execute the two statement
that initialize DS:

Appendix E ~DEBUG and CODEVIEW 477

-G5

AX=0F1B BX=0000 CX=0121 DX=0000 SP=0100 :BP=0000 SI=0000.DI=0000-
DS=0F1B ES=0EFB SS=0F0B CS=0F1C IP=0005 NV UP DI PL NZ.NA PO NC
OF1C:0005 8D160000 -LEA DX, [0000] DS:0000=4548 -

Now we dump memory starting at DS:0)

-D0

OF1B:0000 21 00 48 45 4C 4C 4F 21-24 C4 02 8B 1E 46 43 D1 !.HELLO!S....FC.

OF1B:0010 E3 D1 E3 8B 87 BC 3D 8B~97 BE 3D 89 86 7C FF 89 T I

OF1B:0020 96 7E FF 05 CC 00 52 SO-E8 7D 6A 83 C4 .04 50 E8 .~....RP.}1...P.

OF1B:0030 6C £B 83 C4 02 OA CO 75-03 E9 F6 FE C6.06 D9 37 - 1...... Uevunnnn 7

OF1B:0040 FF 8B lE 46 43 D1 E3 8B-87 A0 3C A3 60 3E 8B 1E ...FC..... <.'>..

OF1B:0050 46 43 8A 87 E6 3C 2A E4-A3 SA 3C D1 E3 D1 E3 8B FC...<*..2<.....

OF1B:0060 87 FC 31 0B 87 FE 31 75-03 E8 SE FD B8 FF FF BB ..l...lu........

OF1B:0070 E5 SD C3 90 55 8B EC 83-EC 08 56 C6 06 0C 42 FF .)..U..... V...B.
DEBUG has displayed 80h bytes of memory. The contents of each byte is
shown as two hex digits. For example, the current content of byte 0000h is
seen to be 48h. Across the first row, we have the contents of bytes 0~7h,
then a dash, then bytes 8-Fh. The contents of bytes 10h through. 1Fh are
shown in the second row, and so on. To the right of the display, the content
of memory is interpreted as characters (unprintable characters are indicated
by adot). *

To display just the message “HELLO!$"”, we type
-D2 8 . Lt ° .
OF1B:0000. .48 45.4C 4C 4F 21 24. - - ‘HELLO!S

.

Before moving on, let us take note of one pecularity of memory duraps. We
usually write the contents of a word in the order high byte, low byte. How-
ever, a DEBUG memory dump displays a word contents in the order low
byte, high byte. For example, the word whose address is Oh contains 4548h,
but DEBUG displays it as 48 45. This can be confusing when we are inter-
preting memory as words. .

Now let’s use the E command to change the message from “HELLO!”
to “GOODBYE!" :

~-E2 ‘GOODBYR!§’

A

To verify the change, we will dump memory”

478 Appendix £ DEBUG and CODEVIEW

-DO F

OF1B:0000 21 00 47 4F 4F 44 42 59-45 21 24 8B 1E 46 42 D1 Y.GOODBYE!S..FC,
Now let’s execute to completion.

-G

GOODBYE!

Program terminated normally

The E command can also be used to enter data interactively. Suppose, for
 example, we would like to change the contents of bytes 200h-204h. Before
doing so, let’s have a look at the current content:

-D 200 204
O0F1B:0200 0OC FF S5A ES 48 .. Z.H
Now let's put 1,2,3,4,5 in these byles.'
-E 200
OF1B:0200 0C.1 FF.2 S5A.3 E9.4 48.5 F3.

DEBUG begins by displaying the current content of byte (2200h,
namely OCh, and waits-for us to enter the new content. We type 1 and hit
the space bar. Next DEBUG displays the content of byte 0201, which is FFh,
and again waits for us to enter the new content.'We type 2 and hit the space
bar to go on to the next byte. After 5 has been entered in byte 204h, DEBUG
displays the content of byte 205h, which is F3. Since we don’t want to enter
any more data, just hit the Enter key to get back to the command prompt.

Now let’s have a look at memory:

-D 200 204

0F1B:0200 01 02 03 04 05

In the process of entering data, if we had wanted to leave the contents of a
byte unchanged, we would just hit the space bar to go on to the next byte,
or hit return to get back to the command prompt.

Appendix £ DEBUG and CODEVIEW 479

E.3 .
CODEVIEW

CODEVIEW is a powerful debugger that enables the user to view
both high-level and assembly language source code during the debugging
process. There are two operating modes: window and sequential. In sequential
mode, CODEVIEW behaves more or less like DEBUG; sequential mode must
be used if your machine is not an 1BM compatible or the program is assem-
bled and linked without options. In window mode, all the capubilities of
CODEVIEW are available, and for that reason it is the only mode we will
discuss. Because CODEVIEW s a large program with many features, we do
not attempt to be comprehensive in the following discussion.

Program Preparation
To debug in windew mode, the code segment of the prog:am must
have class ‘CODE’, for example,
C_SEG SEGMENT ’ CODE’

Note: the simplified segment dlrectrve CODE generates a code segment with

default class ‘CODE'>
When the program is assembled and lmked the /21 ind /CO options

should be specified; for example,

MASM /2I MYPROG;
LINK /CO MYPROG; e

These options cause symbolic information for CODEVIEW to be included in

“the "EXE file. Because ‘this makes the file a lot bigger, the’ program should

be ‘assembleéd and linked in the ordinary way after it has been debugged.

Entering CODEVIEW
The command line for entering CODLEVIEW is
ICV- {options}) filename:

File name is the name of an exccutabie file. The options control CODEVIEW'S
start-up behavior. Here is a partial list (see the Microsoft manual for the

complete sct):

Option Action

/D You are using an 1BM compatible that” does not support certain
1BM- specuf:c trapping functions.”

N You are using a non-iIBM-compatinle computer and wart to be
able to use CTRL C and CTRL-break to stop a program.:

M You have a mouse but don’t want to use it.

/P You have a non-IBM EGA and have problems running
CODEVIEW.

/S You have a non-IBM compatble and want to be able to see

the output screen.

/W - = eeses e ~Youthave an IBM compatible and want to use window mode.

More than one opt‘ion,ma)" be specified. For éxample,’
-CV /D_/M /W _Myprog_
Note that with CODEVIEW, unlike DEBUG,; it is not necessaryto use
-a file extension.

480 Appendix £ DEBUG and CODEVIEW

Window Mode

To demonstrate some of CODEVIEW's features, we will assemble anc
link the program we used to demonstrate DEBUG (PGM4_2.ASM) and take¢
it into CODEVIEW.

C>MASM /ZI A:PGM4_2;

Microsoft (R) Macro Assembler Version 5.10

Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.
50094 + 289327 Bytes symbol space free

0 Warning Errors
0 Severe Errors

C>LINK /CO A:PGM4_2;

Microsoft (R) Overlay Linker Vers;Lon 3.64)
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

C>CV A:PGM4_2

Figure E.1 shows window mode display. We see three windows: a
display window at the top, a dialog window at the bottom, and a register window
at the right side.

Fils Uieu Search Run Uatch Options Language Calls Help | FB=Trace F5=Go
4 pgnd_2.ASN } -
1: .MODEL SMALL 1 AX = 9888
2 . STACK 188H BX = 0888
: .DRTA CX = 8968
q4: nSG [1]: R ‘HELLO'S’ DX = P88
S: .CODE . SP = 8188
6: HAIN PROC BP = 0888
7 sinitializo DS S1 = 6888
8: HOU AX, BDATR DI = 0888
9: ’ HoU DS, AX s INITIALIZE DS - DS = S1AF
168: :display message . ES = S51AF
11: LEA DX, MSG :GET MESSAGE SS = 51C1
12: HoU @AM, 9 :DISPLAY STRING FUNCTIONM : CS = S1BF
13: INT 21ih :DISPLAY MESSAGE IP = 9008
14: Sreturn to DOS . '
15: MOV AN, 4CH W uP
16: . INT 21ih :DOS EXIT EI PL
17: MAIN ENDP . NZ MA
18: END HAIN i PO NC
. - : ;
Microsoft (R CodeView (R). Usrsion 2.2)
\ €T Copyright Hicrosoft Corp. 1986-1988. " All rights ressrved. I
> 4

Figure E.1 CODEVIEW Window Mode Display

Appendix £ DEBUG and CODEVIEW 481

- The display window shows the source code, with the current instruc-
tion in reverse video or In a different color. Lines with previously set break-

points are highlighted.
The dialog window is where you can enter commands, but as we

will see, the function keys can be used for many commands.
' The register window shows the contents of the registers and the

' flags. The flag symbols are the same as DEBUG's.
- It is also possible to activate a watch window, which will display

-.selected variables and conditions.

antrolling the Display

The appearance of the display may be controlled with the keyboard
or a mcuse. Table E.2 shows the keys and key combinations. For mouse
operations, see the Microsoft manual.

Con trbliiug Program Execution

Table E.3 shows the function keys that may be used to szt and clear
breakpoints, trace through a program, or execute to a breakpoint.

Selecting from the Menus

The menu bar at the top of the screen has nine titles. The two com-
mands at the end (TRACE and GO) are provided for mouse users.
1. To open a menu, press Alt and the first letter of the title. For ex-
ample, Alt-F to open the File menu. This causes a menu box to be
displayed.

Table E.2 Display Commands -

Key Function
F1 Displays initial on-line help screen.
F2 Togglés the register window.
F3 . Switches between source, mixed, or assembly modes.

., Source mode shows source code in the display window,
assembly mode shows assembly language instruztions,
and mixed mode shows both.

F4 Switches to the output screen. The output screen shows
output from the program. Press any key to return to the
display screen.

F6 Moves cursor between display and dialog -.indows.
CTRL-G Increases size of the window the cursor is in.

CTRL-T _Decreases size of the window the cursor is in.

-Up arrow Moves cursor up one line.

Down arrow -Moves cursor down one line.

PgUp Scrolls up one page’

PgDon Scrolis down one page. Stops at bottomn of file if in

source mode, behaves like DEBUG's U command in

. other modes. -
“Home Scrolls to top of file if cursor is in display window, or to

top of command buffer if in dialog window.

482

Appendix E ‘DEBUG and CODEVIEW

Table E.3 : Function Key Commands

' Key -F_unftion
. FS Executes 1o the next breakpoint or to the end of the
program if no breakpoint encountered.
F7 * Sets a temporary breakpoint on the line with the cursor

"and executes to that line, unless another breakpoint or
end of program is encountered.

F8 Traces the next source line, if in source mode, or the
next instruction if in assembly mode. if the source line is
a call, it enters the called routine. Note: it will execute
through DOS function calis.

F9 Sets or clears a breakpoint on the line with the cursor. If
the line does not have a breakpoint, it sets one on the
line. If it already has a breakpoint, the breakpoint is
cleared.)

F10 Executgs ine next program step. Like F8 except that calls
are executed rather than traced. .

2. Use the up and down arrow keys to make a selection. When the
item you want is highlighted, press Enter.

3. For most menu selections, the choice is executed immediately,
- however, some selections require a response.

4. Ifa rcspohsc Is nceded, a dialog box opens up and you type the
.~ needed information. -
The escape key can be pressed to cancel 2 menu. When a menu is open, the
left and right arrow keys may be used to move from one menu to another.

The RUN Menu

This_menu contains selections for running the program, Table E.4
gives the choices. -

Watch Cothmands

One.of the most useful of CODEVIEW's features is the ability to
monitor variables and expressions. The watch commands described hereafter
specify the variables and expressions to be watched.

Table E.4 RUN Menu Selections

Selection Action

Start : Runs the program from the beginning. Program will run
. to completion unless a breakpoint or watch statement
(see below) is encountered.

Restart Restarts the program but doesn‘t begin to execute it.
Any previously set breakpoints or watch statements will
still be in effect. :

Execute - Executes in slow motion from the current instruction. To

7 stop execution, press a key or mouse button.
Clear breakpoints . * Clears all breakpoints. Doesn't affect watch statements.

. Aopendix E . DEBUG and CODEVIEW 483

The watch commands can be entered from the watch menu, but it’s
easier to enter them as dialog commands; also, with dialog watch commands
a range of variables can be specified.

) Watching Membry
The watch command to mgonitor memoty is
w(type) range
where range is either

. start_address end_address. ¢

or -

‘L count
'and count Is the number of values to be displayed.

.Type is one of the following:
' " Meaning
default
hex byte
CASCH
signed decimal word
unsigned decimal word
. hex word
hex doubleword
short real
Io'ng real
10-byte real

t

r4
10~
=1

[

The default type is the last type specified by a DUMP, ENTER, WATCH, or
TRACEPOINT command; otherwise it is B.
For example, suppose that array A has been declared as .

A DW 37,12,18,96,45,3
and DS has been initialized to 4A7Dh, the segment number of thv .DATA
segment.

The dialog commands

>W A

SWI A

>WI A L6
>WW A L6
SWI A 4

>W 100 104

Create the following watch window:

484

Appendix £ DEBUG and CODEVIEW

o}
1)
2)
3)
4)
S)

A 4A7D:0000 2% %
A 4A7D:0000 37

A L6
A L6
A 4
100 104

4A7D:0000 37 12 18 96 45 3
471D:0000 0025 000C 0012 0060 002D 0003
47AD:0000 37 12 18

47AD: 0100 6400 8448 6912

In (0), CODEVIEW displays both hex and ASCII values of variable A. In (1),
we ask for A to be displayed as a signed Integer. In (2), we want to see th
array A of six words, displayed as integers. In (3), we ask for array A to be
displayed in hex. In (4), we ask for the following range to be displayed in
decimal: start_address = A = 0000h, end_address = 0004h. In (5), we specify
range DS:0100h to DS:0104h. The display is in decimal, because that was
the type used in (4).

: Now as the program is traced or executed, the values in the watch
window will change as the program changes memory.

Watchihg the Stack

We can monitor the stack as a special case of a memory range. For
example, suppose SS:SP = 4A6C:000Ah and BP = 000Ch. To monitor six stack
words as decimal integers, type

>WI SP L6

and the watch window shows

0)

sp 1 6

4A6C:000A 1813 5404 2009 5404 2741 5404

also BP may be used as a stack pointer; for example,

>WI

BP L6

and the watch window shows

1)

bp 1 6

4A6C:000C 5404 2009 5404 2741 5404 3085

Appendix E DEBUG and CODEVIEW 485

Watching Expressions

The watch window may also be used to monitor the value of a sym-
bolic expression. The syntax is

w2 expression {,format}

where expression can be a single variable or a complex expression involving

" several variables and constants. The optional format is a single letter that

specifies how the expression will be displayed. Somc possibilities are

Format " Output Format
d signed decimal integer
i signed decimal integer
' unsigned decimal integer
hexadecimal integer
C single character

Here are some examples, usmg the array A deﬁned earlier. Suppose
that AX=1and BX =4."

SW? A
>W? A,d
>W? AX + BX
SW? A + 2*AX
and the watch window is
0) A 0x0025
1) A,d: 37
2) AX + BX 0x0005
3) A + 2*AX 0X0027

In (0), the expression to be displayed is just the variable A. It appears as
0x0025 (the notation Oxdigits is the C language notation for hexadecimal
digits). In (1), we ask for A to be displayed with a decimal format. In (2), we
get the sum of the contents of registers AX and BX. In (3), we ask for the
the sum of A and 2 times the contents of AX.

Register Indirection

Sometimes we would like to keep track of a byte or word that is

‘being pointed to by a register; for example, [BX] or [BP + 4]. CODEVIEW
" does not allow the” square bracket pointer notatnon but uses the following

symbols instead:

Assembly Language Symbol Codeview Symbol
BYTE PTR [register] BY register
WORD PTR [register] WO register

DWORD PTR [register) DW register

486

-Appendix E DEBUG and CODEVIEW .

For example, supposc u{at BX contain 0100h, and memory looks like this:

Offset Contents
0100h ABh
010th CDh
0102h EFh

0103h 0Ch

The following watch commands

>W? BY BX
SW? WO BX
>W? WO BX+2

produce this watch window:

0) BY BX
1} WO BX
2) WO BX+2

0x00ab
Oxcdab
0x00ef

Removing Lines from the WATCH WINDOW
To remove a line from the watch window, the Y (yank) command
can be used. Its syntax is

Y number

where number is the number of the line to be removed. The command Y
causes all the lines to be removed.

Tracepoints

' You can specify a variable or range of variables as a trace point. Whén
the variable(s) change, the program will break execution. The syntax is
TP? expression {, format}
or ' -
TP(type} range.

where format, type, and range are the same as for the W command.
CODEVIEW displays the expression, variable, or range of variables in the
same format as the W command, except that the display is intense. For
example, we could type ' .

TPI A L6

Appendix E DEBUG and CODEVIEW 487

.and CODEVIEW wauld displa

~ L N

4A7D:0000- < .37 ~12---18 -96 45 3

.0)- A Le i

'in the'watch window.'If any element of the array A changes, execution
would break.

S g
-Watchpoints,
A 'watchpoint breaks execution when a specified expression becomes
nonzero (true). The command line for setting a watchpoint is

WP? expression {, fo‘r'mat) N

where expression is a relational expression involving variables and possibly

constants. :
For example, suppose that A is defined as

A oW 25h
and the current -values-of AX and BX are 5 and 2, respectively. The dialog
commands . -

>WP? AX>BX
>WP? AX - BX -~ 3
SWP? A > 25
>WP? A = 25

will create the following watch window

0) - AX>BX : 0x0001
1) AX +.BX - 37/: 0x0000

' 2) A >-25 : 0x0000

3) A = 25: O0x0025

The display following (0) indicates that exccution will break if AX > BX is
true. Because AX has 5 and BX has 2, this is currently true and execution
would break imniediately. CODEVIEW indicates true by the notation 0x0001.

In (1), execution will break if AX - BX ~ 3 is nonzero. Currently, AX
~-BX -3=5-2-3=0, so this condition is false. CODEVIEW indicates false
by the .notation 0x0000.

In (2), execution will break if A > 25, which is currently false.

In (3), exccution will break if A = 25. This is currently tryuc, so exc-
cution would break immediately. CODEVIEW shows the current value of A

as 0x002S.

488 Appendix E DEBUG and CODEVIEW

DEBUG Commands in CODEVIEW

Most of the DEBUG commands can be used as dialog commands in
CODEVIEW. When working in source mode, symbolic labels may be used
in commands. For example, if BELOW is a label in a program, then

G BELOW

causes execution to break at this label if encountered. In the D and E com-
mands, a type can be specified. The syntax for E is

Z {type} address {list}

D has the same syntax. Type comes from the same list of one-letter specifiers
that are used for the W command. For example,

EI A 17 -1 456 8900 -29

will let the user enter the preceding five decimal integers in array A.

Appendix

Assembly Instruction

Set

In this appendix, we show the binary encoding of a typical 8086
instruction and give a summary of the common 8086, 8087, 80.286, and

80386 instructions.

%yplcal 8086
tnstruction Format

A machine instruction for the 8086 occupies from one to six bytcs.
For tnost instructions, the first byte contains the opcode, the second byte
contains the addressing modes of the operands, and the other bytes contain
cither address information or immediate data. A typical two-operand instruc-
tion has the format given in Figure I'1

- In the first byte, we see a six-bit opcode that identifics the operation.
The same opcode is used for both 8- and 16-bit operations. The sizc of the
operands is given by the W bit: W = 0 means 8-bit data and W = 1 means
16-bit data.

For register-to-register, registér-to-memory, and memory-to-register op-
crations, the REG ficld in the second bytc contains a register number znd the
D bit specifies whether the register in the REG field is a source or destination
operand, D = 0 means source and D = 1 means destination. For other types of
operations, the REG field contains a three-bit extension of the opcode.

[Syte 1) Byte 2. Byte3 8yted Byte S Byted
! 76 5 43 21 077 6 54 3 2 1 Oflowdisp high disp | low high

' OPCODE |DjW |MOD|REG " |RM ordata |ordata |data |data
S~

figure £1 Opcode Format

489

490 Appendix F Assembly Instruction Set
MOD=11 Effective Address Calculation
R/M W=0 Ww=1 R/M MOD = 00 MOD = 01 MOD = 10
000 AL AX 000 (8X) + (S1) (BX) + (SI) + D8 (BX) + (SI) + D16
001 CcL (@4 001 (BX) + (D) (8X) + (D) + D8 (BX) + (Di) + D1»6
P PR R) wroor -

010 DL DX 010 (BP) + (SI} - (BP) + (S1) + D8 (8P) + (S} + D16

| -

| 011 i BL BX o (BP) + (DV) (BP) + (DI) + D8 (BP) + (D) + D16
100 AH SP 100 (sh (s1) + D8 (Sl} + D16

! = 101 CH BP 101 (on (o)) + D8 (D} + D16

I

| i 10 DH st 110 DIRECT ADDRESS | (BP) + D8 (BP) + D16

[—

]

! : 1 BH D1 1 (BX) (8X) + D8 (8X) + D16

! '

b MOD = 19 means register mode.

i MOD = 00 means memory mode with no displacement, except when R/M = 110, then a 16-bit

! displacement follows.

i

: MGD = 01 means memory, with 8-bit displacement following (D8).

i

i MOD = 10 means memory mode with 16-bit displacement following (D16).

Figure F2 MOD and R/M Fields

The combination of the W, bit and the REG ficld can specify a total
of 16 registers, sce Table F.1.

The second operand is specified by the MOD and R/M fields. Figure
F.2 shows the various modes.

For segment registers, the ficld is indicated by SEG. Table F.2 shows
the segment register encodings. -+

F.2

8086 Instructions The following set of 8086 instructions appears in alphabetical order.

In the set

* (register) stands for the contents of the register

* * (EA) stands for the contents of the memory locatxon given by

. the effective addfess EA .

+ flags affected means-those ﬂags that are modified by the in-
struction according to the result R -

» flags undefined means the values of those ﬂags are unrehable

« disp means 8-bit displacement

e disp-low disp-hi means 16-bit displacement

Appendix F Assembly Instruction Set 491

Table F.1 :Register Encoding

REG w=o w=1
000 AL AX
001 L cx
010+ ot DX
Lon BL BX
100 AH P
101 CH BP
110" DH St

1 'BH D!

Table F.2 ‘Se"g_ment_’i}ggistgr Encoding

SEG Register
00 ES

01 cs,

10 58

" DS

:AAA: ASCIl Adjust for Addition

Corrects the result in AL of adding two unpacked BCD digits or two ASCII digits.
Format: - * AAA
Opéraiion': " If the lower nibble of AL is greater than 9 or if AF s set to
_ 1, then AL is incremented by 6, Al is incremented by 1,
_and AF is set (o 1. This instruction always clears the upper
. , nibble of AL and copies AF to CF.
“Flags:* “~~ * Affected—AF, CF
Undefined—OF, PF, SF, ZF
Encoding: 00110111 R
37-

AAD: ASCIl Adiust for Division
Adjusts the unpacked BCD dividend in AX in preparation for division.
Format:*, AAD
Operation: The unpacked BCD operand in AX is converted into binary
.and stored in.AL. This is achieved by multiplying AH by 10
o and adding the result to £L. AH is then cleared.
Flags: Affected—PF, SF, ZF
Undefined—AFE, CF, OF
Encoding: 11010101" ©.00001010
DS OA

AAM: ' ASClI Adjust for Multiplication

Converts'the result of multiplying two BCD digits into unpacked BCD format.

Can be used in converting numbers lower than 100 into unpacked BCD format.

Format: ARM

Operation: - The contents of AL are converted into two unpackec¢ BCD
digits and placed in AX. AL is divided by 10 and the quo-
tient is placed in AH and the remainder in AL.

192

Appendix FAssembly Instruction Set -

Flags: Affected—PF, SF, ZF
Undefined—AF, CF, OF
Encoding: 11010100 00001010
D4 0A

AAS: ASCII Adjust for Subtraction

Corrects the result in AL of subtracting two unpacked BCD numbers.
Format: AAS
Operation: If the lower nibble of AL is greater than 9-or if AF is set to
1, then AL is decremented by 6, AH is decremented by 1,
and AF is set to 1. This instruction always clears the upper
~ nibble of AL and copies AF to CF.
Tlags: Affected—AF, CF
Undefined—OF, PF, SF, ZF
Encoding: 00111111
3F

ADC: Add with Carry

The carry flag is added to the sum of the source and destmatlon
Format: ADC destination,source
Operation: If CF = 1, then (dest) = (source) + (dest) + 1
If CF = 0, then (dest) = (source) + (dest)
Flags: Affected—AF, CF, OF, PF, SF, ZF
Encoding: Memory or register with register
000100dw mod reg r/m
Immediate to accumulator
0001010w data
Immediate to memory or register
100000sw mod 010 r/m data
(s is sct if a byte of data is added to 16-bit memory or register.)

ADD: Addition

Format: ADD destination, source
Operation: (dest) = (source) + (dest)
Flags: . Affected—AF, CF, OF, PF, SF, ZF

Encoding: Memory or register with rcgister
000000dw mod reg r/m
Imimediate to accumulator
0000010w data
Immediate to memory or register
100000sw mod 000 r/m data
(s is set if a byte data is added to 16-bit memory or register.)

AND: Logical AND

Format: AND destination, source
Operation: Lach bit of the source is ANDed with the corresponding bit
' in the destination, with the result stored in the destination.
CF and OF are cleared.
Flags: Affected—CF, OF, PF, SF, ZF
Undefined: AF

Encoding: Memory or register with register

" 001000dw mod reg r/m
Immediate to accumulator
0010010w data

Appendix FAssembly Instruction Set - 493

Immediate to memory or register
1000000w mod 100 r/m data

CALL: Procedure Call

Format:
Operation:

Flags:' -
Encoding:

CALL target

The offset address of the next sequential instruction is
pushed onto the stack, and control is transferred to the tar-
get operand. The target address is computed as follows: (1)
intrasegment direct, offset = IP + displacement, (2) intraseg-
ment indirect, offset = (EA), (3) intersegment direct, seg-
ment:offset given in instruction, and (4) intersegment
indirect, scgment = (CA +2), offset = (EA).

Affected—none - - :

Intrasegment Direct

11101000 disp-low disp-high

Intra-segment Indirect

11111111 med 010 r/m

Intersegment Direct

10011010 offset-low offset-high seg-low seg-
high

Intersegment Indirect

11111111 med 011 r/m

CBW: Cohvert Byte to Word
Converts the signed 8-bit number in AL into a signed 16-bit number in AX.

Format:

Operation:

Flags:
Encoding:

CBW .
If bit 7 of AL is set, then AH gets FFh.

If bit 7 of -AL is clear, then AH is cleared.
Affected—none

10011000

98 '

_CLC: Clear Carry Flag

Format:

Operation:
-Flags:

Encoding:

Fe

CLC
Clears CF

" Affected—CF

11111000

P

CLD: Clear Direction Flag

Format:
Operation:
Flags:
Encoding:

cLD
Clears DF
Affected—DE
11111100
FC-

CLI: Clear Interrupt Flag
Disables maskable external interrupts.,

Format:' ™"
Operation:.
Flags:
Encoding:

CLI
Clears'IF ! -
Affected—IF

11111010

FA %

494

Appendix F Assembly Instruction Set

CMC: Complement Carry Flag

Format:
Operation:
Flags:
Encoding:

cMmC’
Complements CF
Affected—CF
11110100

FS .. T

CMP: Compare
Compares two operands by subtractxon The flags are affected, but the result

is not stored.
Format:
Operation:

Flags:
Encoding:

CMp destina:ion, source

The source operand is subtracted from the destination and
the flags are set accordmg to the result. The operands are
not affected. -

Affected—AF, CF, OF PF, SF ZF

Memory or register with register

. 001110dw_mod reg r/m

Imniediate with accurnulator
0011110w data

immediate with memory or register
100000sw mod 111 r/m data

CMPS/CMPSB/CMPSW: Compare Byte or Word String

Compares two memory opemnds If preceded by a REP prefix, strings of
arbitrary size can. be compared.’

Format:

Operation:

Flags:
Encodimg:

CMPS source-string.gdegt-string

or '

CMPSB

or

CMPSW

The dest-string indexed by ES:DI is subtracted from the
source-string indexed by SI. The status flags are affected. If -
the tontrol flag DF is 0, then SI and DI are incremented; oth-
erwise, they are decremented. The increments are 1 for byte
strings and 2 for word strings.

Affected—AF, CF, OF, PE SE ZF

1010011w

CWD: Convert Waord to Double Word
Converts the signed 16:bit’ number in AX into a signed 32-bit number in

DX:AX.
Format:
Operat:on:

Flags:
Encoding:

CWD

If bit 15 of Ax is: SLt then DX gets FFFF.

If bit 15 of AX is clear, then DX is cleared.
Affected—none

10011001

99+ .~ FETE Tt

DAA: Decimal Adjust for Addition
Corrects the result in AL of adding two packed BCD operands.

Format:
Operation:

DAA- .
If thé Jower nibble of AL is greater than 9 or if AF is set to
1, then AL is incremented by 6, and AF is set to 1. If AL is

Appendix F Assembly Instruction 5et 495

greater than 9Fh-or if the CF is set, then 60h is added to AL
and CF is set to 1.

Flags: Affected=-AF, CF, PF, SF ZF
. .. Undefined—OF
-Encoding: ° 00100111
"27

'DAS Declmal Adjust for Subtraction

Corrects the result in AL of subtracting two packed BCD operands.

Format: .. . DAS Ty

Operatién: .- If the lower nibble of AL is greater than 9 or-if AF is set to
.* 1, then 60h is subfracted from AL and CF is set to 1.

Flags: Affected—AF, CF, PF, SF, ZF
Encoding: 00101111
'2F

DEC Decrement

Format DEC destlnatzon
Operation: : ,Dectements the destination operand by 1.
Flags: . -. .. -Affected—AF, OF, PF, SF, ZF
Encoding: - Register (word)
01001 'reg™
Memory or register
1111111w.imod 001 r/m

DIV: Divide

Performs unsigned division.

Format: DIV source :

Operation: The divisor is the source operand, which is either mernory
or register. For byte division (8-bit source) the dividend is
AX, and for word division (16-bit source) the dividend. is
DX:AX. The quotient is returned to AL (AX for word civi-
sion), and the remainder is returned to AH (DX for word di-
vision). If the quotient is greater than 8 bits (16 bits for
word division), then an INT O is generated.

Flags: Undefined—AF, CF, OF, PF, SF, ZF

Encoding 1111011w mod 110 r/m

ESC: Escape

Allows other processors, such as the 8087 coprocessor, to access instructions.
: The 8086 processor performs no operation except to fetch a memory ooerand
" for the other processor. - . L
Format: ESC external-opcode, source
Flags: none . .
Encoding: - 11011xxx-~mod xxx r/m
: (The xxx sequence indicates an opcode for the coprocessor.)

HLT: Halt
- Causes- the processor to enter its halt state to wait for an external interrupt.
Format: +HLT
Flags: - none °
-Encoding: .11110100
. .F4

496

Appendix F. Assembly

Performs signed division.
~ Format:

Operation:

Flags:

~ Encoding:

IDIV source

The divisor is the source operand, which is either memory
or register. For byte division (8-bit source) the dividend is
AX, and for word division (16-bit source) the dividend is
DX:AX. The quotient is returned to AL (AX for word divi-
sion), and the remainder is returned to AH (DX for word di-
vision). If the quotient is greater than 8 bits (16 bits for
word division), then an INT 0 is generated.

Undefined—AF, CF, OF, PF, SE, ZF

1111011w mod 111 r/m

IMUL: Integer Multiply
Performs signed multiplication.

Format:
Operation:

Flags:

Encoding:

IMUL scurce

The multiplier is the source operand, which is either mem-
ory or register. For byte multiplication (8-bit source) the mul-
tiplicand is AL, and for word nultiplication (16-bit source)
the multiplicand is AX. The product is returned to AX
(DX:AX for word multiplication). The flags CF and OF are
sct if the upper half of the product is not the sign-extension
of the lower half,

Affected—CF, OF

Undefined—AF, PF, SF, ZF

1111011w mod 101 r/m

IN: Input Byte or Word

Format:
Operation:

Flags:
Encoding:

. IN accumulator, port
.The contents of the accumulator are replaced by the con-

tents of the designated 1/0 port. The port operand is either
a constant (for fixed port), or DX (for variable port).
Affected —none

Fixed port

1110010w port

Variable port

1110110w

INC: Increment

Format: -
Operation:
Flags:
Encoding:

INC destination

Incremeénts the destination operand by 1.
Affected—AF, OF, PF, SF, ZF

Register (word) .

01000 reg

Memory or register

1111111w mod 000 r/m

INT: Interrupt

Transfers control 10 one of 256 interrupt routines.

. Format:.

Operation:

INT interrupt-type

The FLAGS register is pushed onto the stack, then TF andpiF
are cleared, CS is pushed onto the stack and then filled by
the high-order word of the interrupt vector, IP is pushed

Flags:
Encoding:

Appendix F Assembly instruction Set: - 497

onto the stack and then filled by the low-order word of the

interrupt vector.
Affected—IF, TF
Type 3 ..
11001100
Other types’
11001101 type

INTO: Interrupt if Overflow
Generates an INT 4 if OF is set.

Fotmat:
", Operation:

Flags:

Encoding:

INTO

If OF = 1, then same operation as INT-4. If OF = 0, then no

operation takes: place.

If OF=1 then -OF and TF are cleared
If OF=0 then no flags. are affected.”

11001110
CE

IRET: lnterfupt Réturn-

Provides a return from ar;»img'brrup.txvoutin s

_ Format:
Operation:
Flags:
Encoding:

IRET

Pops the stéc.ktix_ltp the registers IP, CS, and FLAGS:

Affected—all-
11001111
CF

J(condition): Jump Short, If Conditlon Is Met

J(condition) .’s}:lbx't-lal;elv e
If the condition is ttie, then a,_}visﬁort‘{gxnp'is made to the la-

.-Format:
- Operation:

: "Flags:

Instruction
JA

JAE

I8

IBE -
i
cxz
J] -
G

JGE
AL

JLE
INA
INAE
_INB
JNBE
NG
JNE

bel. The label must be within

instruction.

-Affected_—noné

Jump If

above

above or equal
below

below or equal
carry

CX150

equal

greater :

greater or equal
less

less or egual

not above .

not above or equal
not below

not be'ow or equal
not carry

not equal

Cofidion " -

CR0 aidd ZF= 0 .

CF=0 e
Che
CFs'1of ZF = 1
CF=0
(CForZF)=0

ZF = 1

- Z2F = 0 and SF = OF

ZF = OF
(SF-xor C) = 1

(SF xor OF) or ZF =1

CFim 1 Or ZF = 1
et
CF=0. .
CF=0and ZF =0
CF=0

ZF =0

128 tg +127 bytes of the next

Encoding

77 disp
73 disp
72 disp
76 disp
72 disp
E3 cisp
74 cisp
7F disp
7D chsp
7C clisp
7€ disp

. 76 disp

72 disp
73 asp
77 drsp
73 disp
75 disp-

498 Appendix F Assembly instruction Set

" ING:-
INGE

INL
INLE
INO
NP
INS
INZ
0
P
JPE
PO
TS
12

JlMPT: Jump
Format:
Operation:
- Flags: -
Lincoding:

: LAHF Load
Format:. -

Operation:

Flags: -
- Encoding: -

Anot greater (SF xor OF) or ZF = 1 7E disp
_not greater nor equal 7C disp :
(SF xor OF) =1
not less’ "~ "SF=OF 70 disp
not less nor equal 2F = 0 and SF = OF 7F disp
" not overflow - OF = 0 71 disp
" 'not parity PF=0 78 disp
not sign” ‘SF=0 79 disp
not zerg ZF=0 75 disp
overflow OF =1 70 disp
parity - PF=1 "7Adisp
_ parity even PF=1 7A disp
parity odd’ PF=0 78 disp
sign SF=1 .78 disp
zero 2F=1 74 disp

JMP target :
Control is transferred to target label.
Affected—none ’
Intrasegment direct

11101001 disp-low disp-hi
Intrasegment direct short .
11101011 disp

Intersegment direct’

11101610

Intersegment indirect

11111111 mod 101 t/m
Intrasegment indirect

11111111 mod 100 r/m

AH from Flagé

LAHF

The low eight bits of the FLAGS register are transferred to

AH.
Affected—none
10011111

SF

LDS':‘ Load Data Segment Register

Loads the DS
offset so that
Format:
Operation:

Flags’ - .
Encoding:

register with-a segment address and a general register with an
data at the segment:offset may be accessed.

LDS destinaticn, source

The source is a doubleword memory operand. The lower
word is placed in the destination register, and the up-
perword is placed in DS

Affected—none:

11005101 rod reg r/m

LEA: Load Effective Address

Loads an offset memory address to a register. -

’
t

Format:

Operation:

Flags:

" Encoding:’

Appendiy F Assembly Instruction Set 499

LEA destination, source

The offset address of the source memory operand is placed
in the destination, which 1s a general register.
Affected—none

10001101""1.nod reg r/m

LES: Load Extra Segment Register "

Loads the ES register with a segment address and a general register with an
offset so that data at the segment:offset may be accessed.

Format:

Operation:

Flags:
Encoding:

LES destlnatz.on source
The source is a doubleword memory operand. The lower
word is placed in the destination register, and the up-
perword is placed in ES. '
none -

11000100 mod reg r/m

LOCK: Lock Bus *

In a2 multiprocessor environment, locks the bus.

Format:

Operation:

Flags:

Encoding:

LOCK -
LOCK is used as a prefix that can precede any instruction.

The bus is locked for the duration of the execution of the in-
struction to prevent other processors from accessing memory.

none

-11110000

FO

LODS/LODSB/LODSW: Load Byte or Word String

Transfers a memory byte or word indexed by SI to the accumulator.

Format:

Operation:

Flags:
Encoding:

Loop

LODS source-string
or ,
LODSB

" or

LODSW)
The source byte (word) is loaded into AL (or AX). SI is incre-
mented by 1 (or 2) if DF is clear; otherwise SI is decremented
by 1 (or 2).)

Affected—none

- 1010110w

Loop until count is complete.

"Format:
Operation:

Flags:
Encoding:

100OP short-label

'CX is decremented by 1, and 1f the result is not zero ther.

control is transferred to the labeled mstructxon otherwise
control flows to the next instruction. .

Affected—none

11100010 disp

E2

LOOPE/LOOPZ: ‘Loop if Equal/Loop If zero
A loop is controlled by the counter and the ZF.

Format:

LOOPE short-lakel
or

. 500 Appendix F Assembly Instruction Set

Operation:

Flags:
Encoding:

LOOPZ short-label .
CX is decremented by 1, if the result is not zero and ZF = 1,
then control is transferred to the labeled instruction; other-
wise, control flows to the next instruction.

Affected—none-

11100001 disp

El

LOOPNE/LOOPNZ: 'Loop If Not EqualiLoop If Not Zero
A loop is controlled by the counter and the ZF.

Format: LOOPNE short-label
or
LOOPNZ ‘short-label

Operation: CXis decremented by 1, if the result is not zero and ZF = 0,
then control is transferred to the labeled instruction; other-
wise, control flows to the next instruction.

Flags: Affected—none

Encoding: 11100000 disp

' EO !

MOV: Move

Move data.

Format: MOV destination, source

Operation: Copies the source operand to the destination operand.

Flags: Affected—none

Encoding: To memory from accumulator

1010001iw addr-~low addr-high

To accumulator from memory

1010000w addr-low addr-high

To segment register from memory or register
10001110 mod 0 seg r/m

To memory or register from segment register
10001100 mod 0 seg r/m

To register from memory or register/ To memory from reg
100010dl mod reqg r/m (addr-low addr-high)
To register from immediate-data

1011w reg data (data-high)

To memory or register from immediate-data
1100011w mod 000 r/m data (data-high)

MOVS/MOVSB/MOVSW: Move Byte or Word String

Transfers memory data addressed by SI to memory location addressed by
ES:DI. Multiple bytes (or words) can be transferred if the prefix REP is used.

Format:

Operation:

Flags:
Encoding:

MOVS dest-string,source-string

or

MOVSB

or

MOVSW’

The source string byte (or word) is transferred t~ the destina-
tion operand. Both SI and DI are then incremr by 1 (or
2 for word strings) if DF = 0; ot!'erwise, boti:

decremented by 1 (or 2 for word ,.-ings).

Affected—none

101001 0w

Appendix FAssembly Instruction Set 501

MUL: Multiply

Unsigned multiplication.

Format: MUL source i

Operation: The multiplier is the source operand which is either mem-
ory or register. For byte multiplication (8-bit source) the mul-
tiplicand is AL and for word multiplication (16-bit source)
the multiplicand is AX. The product is returned to AX
(DX:AX for word multiplication). The flags CF-and OF are

. set if the upper half of the product is not zero. - ’

Flags: . Affected—CF, OF .

_Undefined—AF, PF, SF, ZF
Encbding: 1111011w mod 100 r/m

NEG: Negate

Forms two’s complement.

Format: NEG destination.

Operation: The destination operand is subtracted from all 1's (OFFh for
. bytes and OFFFFh for words). Then a 1 is added and the re-
" sult placed in the destination.

Flags: Affected—AF, CF, OF, PF, SF, ZF

Encoding: 1111011w mod 011 r/m

NOP: No Opefation

Format: NOP -

Operation: No operation is performed.
Flags: Affected—none

Encoding: 10010000

80 .

, NOT: Logical Not

Format: NOT destination o
Operation: - Forms the one’s complement of the destination.
Flags: Affected—none

Encoding: 1111011w mod 010 r/m

OR: Logical Inclusive Or

Format: OR destination, source
Operation: Performs logical OR operation on each bit position of the op-
~ eérands and places the result in the destination.
Flags: Affected—CF, OF, PF, SF, ZF
: -, Undefined—AF . A
Encoding: Memory or register with reg. ster
" 000010dw mod reg r/m
Immediate to accumulator
0000110w data
. Immediate to memory or register
1000000w mod 001 r/m

OUT: Output Byte or Word

Format: OUT accumulator,port

. Operation: :, The contents of the designated I/O port are replaced by the
contents-of the accumulator. The port is either 1 constant
(for fixed port) or DX (for variable port). N -

S02 Appendix F Assembly Instruction Set

Flags:
Encoding:

Affected—nonc
Fixed Port
1110011w port
Variable port

- 1110113w

POP: Pop Word Off Stack to Destination

Format:
Operation:

Flags:
Encoding:

POP destination

The contents of the destination are replaced by the word at
the top of the stack. The stack pointer is incremerited by 2.
Affected—none

General register

01011 reg

Segment register

000 seg - 111

Memory or register

1000111 mod 000 x/m

POPF: Pop Flags Off Stack

Format:
Operation:

Flags:
Encoding:

POPF
Transfers flag bits from the top of the stack to the FLAGS reg-

“ister and then increments SP by 2.
Affected—all

10011101
9D

PUSH: Push Word onto Stack

Format:
Operation:

Flags:
Encoding:

PUSH source

Decrements the SP register by 2 and then transfers a word
from the source operand to the new top of stack.

rone

Generai register

01010rxeq

Segment register

000 seg 110

Memory or register

11111111 mod 110 r/m

PUSHF: Push Flags onto Stack

Format:
Opceration:
Flags:
Encoding:

PUSHFE

Decaements SP by 2 and transfers flag bits to the top of the stack.
Affected—nonc :
10011100

9C

RCL: Rotate Left Through Carry

Rotates destination left through the CF tlag one or more times.

Format:

Opcration:

RCL destination,l

or

RCL destination,CL

The first format rotates the destination once through CF_re-
sulting in the msb being placed in CF and the old CF ei?&ed
in the Isb. To rotate more than once, the count must be

Flags:
Encoding:

'Appendix F - Assembly Instructicn Set 503

placed in'CL. Whcn the count is 1 and the.leftmost two bits
of the old destination are equal, then OF is cleared; if they
are unequal, OF is sct to 1. When the count is not 1, then
OF is undefined. CL is not changed.

Affected—CF,OF

110100vw ‘mod 010 r/m

If v=0, count=l . S

1f v=1, count=(CL))

RCR: Rotate Right Through Carry

'-Rotates'destmatxon right through the CF ﬂag Qne or more times.

Format:

Operation:

Flags:
.Encoding:

RCR destination,l .
or

- RCR destination, CL‘

The first format rotates the destination once through CF .e-
sulting in the Isb being placed in CF and the old CF ended
in the msb. To rotate mure t 1 once, the count must be
placed in CL. When the count is 1 and the leftmost two bits

"of the new destination are eéqual, then OF is cleared; if they

are unequal, OF is set to 1. When the count is not 1, then
OF is undefined. CL is not changed.
Affected—CF,-OF Sl

110100vw mod. 011 r/m

If'v = 0, c'ountlt='l
If v = 1, count = (CL)

. REP/REPZ/REPE/REPNE/REPNZ: Repeat String Operation

-The string operation that [ollows is epeated while (CX) is not zero.

Format:

Operation:

Flags: -
Encoding:

REP/REPZ/REPE/REPNE/REPNZ string-instruction
The string operation is carried out until (CX) is decremented
to 0. For CMPS and SCAS operations, the ZF is alsc used in
terminating the iteration. For REP/REPZ/REPE the CMPS and
SCAS operations are repeated if (CX) is not zero and ZF is 1.
For REPNE/REPNZ, the CMI'S and SCAS operations are re-
peated if (CX) is not zero and ZF is O,

See the associated string instruction.

REP/REPZ/REPE 11110011

REPNE/REPNZ~ 11110010

RET: Return from Procedure

Returns control after a called procedure has been executed.

Format: '

Operation:

) Flags:”
- Encoding:

. RET .[pep=vaiue]
-1f RET is within a NEAR procedure, it is translated into an in~

trasegmerit 1cturn, which updates the IP by popping one
word from the stack. If RET is within a FAR procedure, it is
translated into an intersegment return that updates both the
IP and CS. The optional pop value specilies a number of

“bytes in the stack 16°be’discarded. lhcsc are parameters

passed to the procedure

"Affected—none
) Intmsebment

110(20011

.lntrasegment with ‘pop ‘value

411000010

- 504.- Appendix F Assembly Instruction Set

Intersegment

11001011

Intersegment with pop value
11001010

ROL: Rotate Left

Rotates destination left one or more times.

Format:

Operation:

Flags:

. Encoding:.

ROL destination,l

or

ROL destination,CL

The first format rotates the destmauon once; CF also gets
the msb. To rotate more than once, the count must be
placed in CL. When the count is 1 and the new CF is not
the same as the msb, then the OF is set, otherwise, OF is
cleared. When the count is not 1, then OF is undefined. CL
is not changed.

Affected—CF, OF

110100vw mod 000 r/m

If v = 0, count = 1

If v =1, count = (CL)

ROR: Rotate Right

Rotates destination right one or more times.

Format:

Operation:

Flags:
Encoding:

ROR destination,l

or

ROR destination,CL

The first format rotates the destination once; CF also gets
the Isb. To rotate more than once, the count must be placed

in CL. When the count is 1 and the leftmost two bits of the
' new destination are equal, then OF is cleared; if they are un-
-equal, OF is set to 1. When the count is not 1, then OF is

undefined. CL is not changed.
Affected—CF, OF

110100vw mcd 001 r/m
I£f v = 0, count = 1
If v = 1, count = (CL)

SAHF: Storé AH in FLAGS Register

Format:

Operation:

Flags:)
Encoding:

SAHF
Stores five bits of AH into the lower byte of the FLAGS regis-
ter. Only the bits corresponding to the flags are transferred.
The-flags in the lower byte of FLAGS register are SF = bit 7,
ZF = bit 6, AT = bit 4, PF = bit 2, and CF = bit 0.
Affected—AF, CF, PF, SF, ZF

10011110

9E

SAUSHL: Shift Arithmetic Left/Shift Logical Left

Format:

Operation:

SAL/SHL destination,l

or

“SAL/SHL destination,CL

The first format shifts the destination once; CF gets the b
and a 0 is shifted into the Isb. To shift more than once, the
count must be placed in CL. When the count is 1 and the

-Flags:

Encoding:’

Appendix F Assembly Instruction Set 505

new CF is not the same as the msb, then the OF is set; other-

wise, OF is cleared. When the count is not 1, then OF is un-
defined. CL is not changed.

Affected—CF, OF, PF, SE, ZF

Undefined—AF

- 1106100vw mod 100 r/m

If v = 0, count = 1
If‘v = 1,‘ count = (CL)

SAR: Shift Arithmetic Right

Format:

Operation:

‘ Flags:

Encoding:

SAR destination,1

or. ‘

SAR destination,CL

The first format shifts the destination once; CF gets the Isb
and the msb is repeated (sign is retained). To shift raore
than once, the count must be placed in CL. When the
count is 1 OF is cleared. When the count is not 1, then OF
is undefined. CL is not changed.

_ Affected—CF, OF, PF, SF, ZF

Undefined—AF

110100vw mod 111 1/m
If v = 0, count = 1
If v = 1, count = (L)

SBB: Subtract with Borrow

Format:
Operation:

Flags:
Encoding:

SBB destination, scurce
Subtracts source from destination; and if CF is 1 then sub-
tract 1 from the result. The result is placed in the destina-
tion.

Affected—AF, CF, OF, PF, SF, ZF

Memory or register with register

000110dw mod reg r/m

Immediate from accumulator -

0001110w data

Immediate from memory or register

100000sw mod 011 -r/m data

(s is set if an immediate-data-byte is subtracted from 16-bit
memory or register.)

SCAS/SCASB/SCASW: Scan Byte or Word String

Compares memory against the accumulator. Used with REP, it can scan mul-
tiple memory locations for a pamcu]ar value.

Format:

. 1
Operation::,

Flags:
Encoding:

SCAS dest-string
or

SCASB

or

.SCASW

Subtracts the destination byte (or word) addressed by DI
from AL (or AX). The flags are affected but the result is not
saved. DI is incremented (if DF = 1), or decremented (if DF =
0) by 1 (byte strings) or 2 (word strings).

Affected—AF, CF, OF, PF, SF, ZF

1010111w

506

Appendix F Assembly instruction Set

SHR: Shift Logical Right

Format:

Operation:

Flags:

Encoding:

SHR destination,1

or ‘

SHR destination,CL

The first format shifts the destination once; CF gets the Isb
" and a 0 is shifted into the msb. To shift more than once,
the count must be placed in CL. When the count is 1 and
the leftmost two bits are equal, then OF is cleared other-
wise, OF is set to 1. When the count is not 1, then OF is un-
defined. CL is not changed.

Affected—CI, OF, PF, SF, ZF

Undefined—AF

110100vw mod 101 r/m

If v = 0, count =1

If v = 1, count = (L)

STC: Set Carry.Flag

Format:.

Operation:

Flags:
Encoding:

.. STC

CFissetto 1.
Affected—CF
11111001

F9

STD: Set Direction Flag

Format:

Operation:

Flags:
Encoding:

" STD

DF is set to 1.
Affected—DF
11111101

FD

STI: Set Interrupt Flag

Format:

Operation:

Flags:
Encoding:

STI

IF is set to 1, thus enabling external interrupts.
Affected—IF

11111011

FB

STOS/STOSB/STOSW: Store Byte or Word String

Stores the accumulator into memory. When used with REPD, it can store mul-
tiple memory locations with the same value.

Format:

Operation:

Flags:
Encoding:

STOS dest-string:

or

SI0%B

or

5TOSW

Stores Al (or AX) into the destination byte (or word) ad-
dressed by DL Dl is incremented (DF = 1), or decremented
(DF = O) by 1 (byte strings) or 2 (word strings).
Affected—none

1210101w

Appendix-F _Assembly Instruction Set 507

SUB: Subtract = .-

Form.'—xt:

Operation:

Flags:
Encoding:

SUB destination, source
Subtracts source. from destination. The result is placed in the
destina..on,

* Aifected—AF, CF, OF, PF, SF, ZF

Mnmi~n ~ Cegister with register

001010dw med reg r/m

immediate from accumulator

0010110w data

Immediate from memory or register

100000sw mod 101 r/m data

(s is set if an immediate-data-byte is subtracted from 16-bit
memory or register.) .

TEST: Test (Logical Compare)

Format:

Operation:

Flags:

Encoding:

WAIT

Format:

-Operation:

Flags:

Encoding:

TEST "destination, source

The two operands are ANDed to affect the flags. The oper-"
ands are not affected.

Affected—CF, OF, PF, SF, ZF

Undefined—AF

* Memory or register with register

1000010w mod reg r/m
Immediate with acmmulator
1010100w data ~ -~

Immediate with memory or register

“1111011w mod 000 r/m data

WAIT
‘The processor is placed in a wait state until activated by an
.external interrupt.

- Affected—none
10011011
9B

XCHG: E.xch‘a'r{ge

Format:

Operation:

Flags:
Fncoding:

XCHG destination, source

The source operand and the destination operand are inter-
changed.

Affected—none

Register with accumulator

10010reg

Memory or register with register

1000281lw rod reg r/m-

XLAT: Translate

Performs a table lookup translation.

Format:

Operatiorni:

Flags:

Encoding:

XLAT source-table. .-

BX must contain. the offset.address of the source table, \\}uch
is at most 256 bytes. AL should contain the index of tl¢ table
element. The operation replaces AL by the contents of the ta-
ble element addressed by BX and AL.

Affected—none - -

11010111

b7

508 Appendix F Assembly Instruction Set

XOR: Exclusive OR

Format:
Operation:

Flags:

Encoding:

F.3
8087 Instructions

XOR destination, source

The exclusive OR operation is performed bit-wise with the
source and destination operands; the result is stored in the
destination. CF and OF are cleared.

Affected—CF, OF, PF, SF, ZF

Undefined: AF

Memory or register with register

001100dw mod reg r/m

Immediate to accumulator

0011010w data

Immediate to memory or register

1000000w mod 110 r/m data

The 8087 uses several data types, when transferring data to or from
memory, the memory data definition determines the data type format. Table

F.3 shows the

-association between the 8087 data types and the memory data

definitions. In this section we only give 8087 instructions for simple arith-
metic operations. Check the 8087 manuai for other instructions.

FADD: Add

Format:

Real

FADD

or

FADD source

or

FADD destination, source

Operation: Adds a source operand to the destination. For the first form,
the source operand is the top of the stack and the destina-
tion is 'ST(1). The top of the stack is popped, and its value is
added to the new top. For the second form, the source is ei-
ther short real or long real in memory; the destination is
the top of the stack. For the third form, one of the operands
is the top of the stack and the other is another stack regis-
ter; the stack is not popped.

Table F.3 8087 Data Types

Data Type Size (bits) Memory Pointer Type

Definition

Word integer 16 bow WORD PTR

Short integer 32 [»]0) DWORD PTR

Long integer 64 DQ QWORD PTR

Packed decimal 80) DT TBYTE PTR

Short real 32 DD DWORD PTR

Long real 64 DQ QWORD PTR

Temporary real 80 DT TBYTE PTR

Appendix FAssembly Instruction Set 509

FBLD: Packed Decimal Load

Format: FBLD scurce
"Operation: Loads a packed decimal number to the top of the stack. The
~ source operand is of type DT (10 bytes).

FBSTP: Packed BCD Store and Pop

Format: . FBSTP destination
Operation: Converts the top of the stack to a packed BCD foimat and
stores the result in the memory destination. Then the stack

is popped.

FOIV: Divide Real
Format: FDIV
S ter

FDIV source ’

or .
FDIV destination, source

Operation: Divides the destination by the source. For the first form, the
source operand is the top of the stack and the des:ination is
ST(1). The top of the stack is popped and its value is used to
divide into the new top. For the second form, the source is
either short real or long real in memory; the destination is
the top of the stack. For the third form, one of the operands
is the top of the stack and the other is another stack regis-
ter; the stack is not popped.

FIADD: iInteger Add

Format: FIADD source '
Operation: Adds the source operand to the top of the stack. The source
‘operand can be either a short integer or 2 word integer.

FIDIV: Integer Divide

Format: FIDIV source
Operation: Divides the top of the stack by the source. The source oper- -
- and can be either a short integer or a word integer.

FILD: Integer Load ~

Format: FILD source
Opecration: Loads a memory integer operand onto the top of the stack.
The source operand is either word integer, short integer, or

long integer.

FIMUL: " Integer Multiply

Format: .- FIMUL source
Operation: Multiplies the source operand to the.top of the stack. The
source operand can be either a short integer or a word integer.

FIST: Integer Store

Format: FIST destination
Operation: Rounds the top of the stack to an integer value and stores to
: a memory location. The destination may be word integer or

short integer. The stack is not popped.

510

Appendix F Assembly Instruction Set

FISTP: Integer Store and Pop

Format: - FISTP. ‘destination : :

Operation: Rounds the top of the stack to an integer value and stores to
a memory location. Then the stack is popped. The destina-
txon may be word integer, short lmeger or long integer.

FISUB' Integer Subtract

_Format; FISUB source
‘Operation: Subtracts the source operar.d from the top of the stack. The
source operand can be either a short integer or a word integer.

FLD: Load Real

Format: FLD source

Operation: Loads a real operand onto the top of the stack. The source
may be a stack register ST(i), or a memory location. For a mem-
ory operand, the data type may be any of the real formats.

FMUL: Multiply Real

- Format: FMUL
or
FMUL source
or
FMUL destination, source

Operation: Multiplies a source operand to the destination. For the first

forni, the source operand is the top of the stack and the des-
tination is ST(1). The top of the stack is popped and its
value is multiplied to the new top. For the second form, the
source is either short real or long real in memory; the desti-
nation is the top of the stack. For the third form, one of the
operands is the top of the stack and the other is another
stack register; the stack is not popped.

FST: Store Real

Format: FST destination

Operation: Stores the top of the stack to a memory location or another
stack register. The memory destination may be short real
(doubleword) or long real (quadword). The stack is not

popped.

FSTP: Store Real and Pop

Format: FSTP destination

Operation: Stores the top of the stack to a memory location or another
stack register. Then the stack is popped. The memory desti-
nation may be short real (doubleword), long real
(quadword), or temporary real (10 bytes).

FSUB:: Subtract Real

Format: FSUB
or
FSUB source
or
FSUB destination, source

Appendix FAssembly Instruction Set 511

Operation: ; Subtracts a source operand from the destination. For the
first form, the source operand is the top of the stack and the
“destination is ST(1). The top of the stack is popped and its
value is subtracted from the new top. For the second form,
the source is either short real or long real in memory; the
destination is the top of the stack. For the third form, one
of the operands is the top of the stack and the other is an-
other stack register; the stack is not popped.

F.4

80286 Instructions’

The real-mode 80286 instruction set includes all 8086 instructions

" plus the extended instruction set. The extended instruction set contains five

groups of instructions, (1) muitiply with immediate values (IMUL), (2) input
and output strings. (INS and OUTS), (3) stack operations (POPA, PUSH im-
mediate, PUSHA), and’(4) ‘'shifts and rotatés with immediate count values,
and () instructions for translating high-level language constructs (30UND
and ENTER). We only give the instructions in groups 1-4.

IMUL: integer Immediate Multiply .-

Format: © ' IMUL destination, immediate’
or -~
IMUL destination, source, immediate
Operation: ~ For the first format, the immediate operand, which must be
" " a byté, is multiplied with the destination, which must be a
--16-bit register. The lower 16-bit of the result is stored in the
" register. For the second format, the 8- or 16-bit immediate
- operand-is multiplied with the source operand, which may
be a 16-bit register or a memory word. The lower 16-bit of
; the‘result is stored-in the'destination, which must be a 16-
bit register. The flags CF and OF are set if the upper half of
) the product is not the sign- extens:on of the lower half.
Flags: Affécted—CF, OF '
Undefmed—-AF PF SF, ZF
Encoding: 011019s1 mod reg r/m data [data if s=0])

~

. INS/INSB/INSW: Input_from Port to String

Transfers vuibylu‘ or word string clement from a port to memory. Multiple
bytes or words can be transferred if the prefix REP is used.

.- Format:! © INS destination~string,port

“or |

< INSB
xor
JINSW .

. Opcmuon A byle' or. word is transfcncd from the paort designated by

DX to the location ES:DL DI is then incremented by 1 (or2
for word strings)yif DF = 0; otherwise, DI is decrementec. by
1 (or 2 for woid strings).

Flags: - Affected—none i

Encoding: 01310110w . '

512

Appendix F Assembly Instruction Set

OUTS/OUTSB/OUTSW: Output String to Port

Transfers a byte or word string element from memory to a port. Multiple
bytes or words can be transferred if the prefix REP is used.
Format: OUTS destination-string,port
or
CUTSB
or
OUTSW
Operation: A byte or word is transferred from memory located at DS:S1
to the port designated by DX. Sl is then incremented by 1
(or 2 for word strings) if DF = 0; otherwise, SI is
decremented by 1 (or 2 for word strings).
Flags: Affected—none .
Encoding: 011011iw

POPA: Pop All General Registers

Format: POPA

Operation: The registers are popped in the order DI, SI, BP, SP, BX, DX,
CX, and AX.

Encoding: (1100001
61

PUSH: Push immediate

Format: PUSH data

Operation: The data may be 8 or 16 bits. A data byte is signed extended

into 16 bits before pushing onto the stack.
Flags: Affected—none
Encoding: 011010s0 data [data if s = 0]

PUSHA: Push Al General Registers

Format: PUSHA
Operation: The registers are pushed in the order AX, CX, DX, BX, origi-
nal SP, BP, S, and DI.

Flags: Affected—none
Encoding: 01100000
60

The general format of shifts and rotates with immediate count values is

Opcode destination, immediate

where opcode is any one of RCL, RCR, ROL, ROR, SAL, SHL, SAR, and SHR.
If the immediate value is 1, then the instruction is the same as an 8086
instruction. For an immediate value of 2-31, the instruction operates like an
8086 instruction in which CL contains thesvalue. The 80286 does not allow
a constant count value to be greater than 31.

The encodings for immediate values of 2-31 are

RCL

1100000w mod 010 r/m

RCR A
1100000w mod 011 r/m |
ROL
1100000w. mod 000 r/m
ROR
1100000w mod 001 r/m

- Appendix F Assembly instructicn Set 513

SAL/SHL .

-

-1100000w mod 100. r/m .

SAR
1100000w méd 111 r/m-
SHR -
1100000w mod 101 r/m

F.5
20386 Instructions

The real-mode 80386 instruction set includes all real-mode 80286
instructiohs plus their 32-bit extensions, together with six groups of new
instructions, (1) bit scans, (2) bit tests, (3) move with cxtensions, (4) set byte
on condition, {5) double-precision shifts, and (6) move to or from special
registers. We only give instructions in groups 1-5.

Bit Scan Instructions _
- -~ The bit scan instructions are BSF (bit scan forward) and B3R (bit scan -
reverse). They are used to scan an operand to find the first set bit, and they

differ only in the direction of the scan.

Formats: BSF destination, source
or
BSR destination, source
Operation: ‘' The destination must be a register, the source is either a reg-
ister or a memory location. They must be both words or
.both doublewords. The source is scanned for the first set bit.
If the bits are all 0, then ZF is cleared; otherwise, Z[is set
and the destination register is loaded with the bit position
of the first set bit. For BSF the scanning is from bit 0 to the
. msb, and for BSR the scanning is from the msb to bit 0.
Flags: Affected—ZF -
Encoding: BSF ot
00001111 10111101 mod reg r/m
BSR '
00001111 10111101 mod reg r/m

Blt Test Instructions

- The bit test instructions are BT (bn test), BTC (bit test and comple-
ment), BTR (bit test and reset), and BTS (bit test and set). They are used to
copy a bit from the destination operand to the CF so that the kit can be
tested by a JC or JNC instruction.

Format: BT destination, source
or)
BTC destxrat on, source
or m_.td -
BTR destination,source
"BTS destination, source
ppe'rhgioﬁ:‘ The sotirce speéxﬁes a bit posiuon in the destination %o be
. copxed to the CF. BT simply copies the bit to CF, BTC copies
the bit and complements it in the destination, BTR copies
the bit and resets it in the destination, and BTS copies the

514 Appendix F Assembly Instruction Set

bit and sets it in the destination. The source is either a 16-
bit register, 32-bit register, or an 8-bit constant. The destina-
tion may be a 16-bit or 32-bit register or memory. If the
source is a register, then the source and destination must
have the same size.

Flags: Affected—CF

Encoding: Source is 8-bit immediate data:
BT
00001111 10111010 mod 100 r/m
BTC
00001111 10111010 mod 111 :/m
BTR
00001111 10111010 mod 110 xr/m
BTS
00001111 10111010 mod 101 r/m
- Source is register:
BT
00001111 10100011 mod reg r/m
BTC
00001111 10111011 mod reg r/m
BTR i
00001111 10110011 mod reg r/m
BTS
00001111 10101011 mod reg r/m

Move with Extension Instructions

The move with extension instructions are MOVSX (move with sign-
extend) and MOVZX (move with zero-extend). These instructions move a
small source into a bigger destination and extend to the upper half with the
sign or a zero.)

Format: MOVSX destination, source
or ’
MOVZX destination, source

Operation: The destination must be a register, the source is either a reg-
ister or memory. If the source is a byte (or word) the destina-
tion is a word (or doubleword). MOVSX copies and sign
extends the source into the destination. MOVZX copies and
zero extends the source into the destination.

Flags: Affected—none

Encoding: MoOvsx
00001111 1011111lw mod reg r/m
MOVZX
00001111 10110l1W mod reg r/m

Set Byte on Condition Instructions

The set byte on condition instructions set the destination byte to 1
if the condition is true and clear it if the condition is false.

Format: SET (condition) destination
Operation: The destination is either an 8-bit register or memory. It is
set to 1 if condition is true and to 0 if condition is false.
Flags: Affected—none
Encoding: 00001111 opcode mod 000 r/m
(the opcode byte is given in the following in hex)

Instruction
SETA
SETAE
SETB
SETBE
SETC
SETE .
SETGG
SETGE
SETL
SETLE
SETNA
SETNAE
SETNB
SETNBE
SETNC
SETNE
SETNG
SETNGE
SETNL
SETNLE
SETNO
SETNP
SETNS
SETNZ
SETO
SETP
SETPE
SETPO
SETS
SETZ

‘Appendix F- Assembly Instruction Set

. Set If -

above

above or equal
below

below or equal
carry

equal

greater

greater or equal
iess

less or equal

not above

not above or equal
not below

not below or equal -~
not carry

not equal

not greater

not greater nor equal
not less -
not less nor equal
not overfiow

not parity

not sign

not zero

overflow

parity

parity even

parity odd

sign

zero

Condition
CF=0and ZF=0
CF=0

CF =1
CF=1orZfF=1
CF=0

ZF =1

ZF = 0 and SF = OF
ZF = OF .

(SF xor OF} = 1

(SF xor OF) or ZF = 1

CF=1torZf=1
CF=1
CF=0

CF=0andZF=0
CF=0

F=0 .
(SF xor OF) or ZF = 1
(SF xor OF) = 1
SF = OF

ZF = 0 and SF = OF

OF=0

PF=0
SF=0
ZF=0
OF =1
PF =1
PF=1
PF=0
SF=1
F=1

Double-Precision Shift Instru&ions

The double-precision shift instructions are SHLD (double-precision
shift left) and SHRD (double-precision shift right). i

Format:
or

SHLD destination, source, count

SHRD destination, source, count

Operation:

515

Opcode

97
93
92
<6
G2
94
9F

32
9Z
Sk
g6
9z
93
97
93
95
9E
9C
9D
SF

91

98
99
95
90
9A
SA
98
98
94

The destination is either register or memory, the source is a
register, and both must be of the same size (either 16 or 32
bits). Count is either an 8-bit constant or CL. The count

specifies the number of shifts for the destination. Instead of
shifting in zeros as in the case of the single-precision shifts,

the bits shifted into the destination are from the source.

However, the source is not altered. The SF, ZF, and PF flags
are set according to the result; CF is set to the last bit
shifted out; OF and AF are undefined.

516

Appendix F Assembly Instruction Set

Flags:

Encoding:

Affected—SF, ZF, PF, CF
Undefined—OF, AF
Count is ‘immediate data:
SHLD -

00001111 10100100 mod
SHRD

00001111 10101100 mod
Count is CL:

SHLD

00001111 10100101 mod
SHRD

00001111 10101101 mod

reg

reg

reg

reg

r/m

r/m

r/m

r/m

[disp])

[disp]

[disp)

[disp]

data

data

Appendix

Assembler Directives

This appendix describes the most important assembler directives. To explam
the syntax, we will use the following notation:

| separates choices
{} enclosed items are optional
L] repeat the enclosed items 0 or more times

If syntax is not given, the directive has no required or optional arguments.

ALPHA

Tells the assembler to arrange segments in alphabetical order. Placed before
segment definitions.

ASSUME

Syntax: © ASSUME segment reglster name (,segment_regis-
ter: name)

Tells the assembler to associate a segment register with a segment name.

Fxample: ASSUME CS:C_SEG, DS:D_SEG, 05$:S_SEG, ES:D_SEG

Note: the name NOTHING cancels the current segment register association.
_In particular, ASSUME NOTHING cancels segment register associations made
by previous ASSUME statements.

.CODE

Synt}lx‘: .CODE {name}

A simplified segment directive (MASM 5.0) for defining a code segment.

.COMM .
Syntax : (':O::,V"'d'efinition [definition)

« where definition has the syntax NEARIFAR labelisizef:count}
. label is a variable name

size-is BYTE, WORD, DWORD QWORD or TBYTE
count is the number of elements contained in the variable

(default =1)
517°

518 Appéndix G Assembler Direct_ivés

Defines a communal variable; such a variable has both PUBLIC and EXTRN
attributes, so it can be used in different 8ssembly modules.

Examples: comM NEAR WORD1:WORD
coMM FAR ARR1:BYTE:10, ARR2:BYTE:20

COMMENT

Syntax: COMMENT delimiter {text])
{text}
delimiter {text)

where delimiter is the first nonblank character after the COMMENT directive.
Used to define a comnrent. Causes the assembler to ignore all text between
the first and second delimiters. Any text on the same line as the second
delimiter is ignored as well.

Examples:

COMMENT * Uses an asterisk as the delimiter. All this
text is ignored *

COMMENT + This text and the following instruction is ig-
nored too + MOV AX, BX

.CONST

A simplified segment directive for defining a segment containing data that
will not be changed by the program. Used mostly in asscmbly language
‘ routines to be called by a high-level language.

.CREF and .XCREF

Syntax: .CREF {name {,name}}
.XCREF (name [,name]}

In the generation of the cross-reference (.CRF) file, .CREF directs the gener-
ation of cross-referencing of names in a program. .CREF with no arguments
causes cross-referencing of all names. This is the default directive.

.XCREF turns off cross-referencing in general, or just for the specified names.

Example:

.XCREF) ;turns off cross-referencing
.CREF .sturns cross-referencing back
. XCREF NAME1, NAME2 ;turns off cross-referencing

;of NAMF1 and NAME2

.DATA and .DATA?

Simplified segment directives for defining data segments. .DATA defines an
initialized data segment and .DATA? defines an uninitialized data segment.
Uninitialized data consist of variables defined with “?". .DATA? is used mostly
with assembly language routines to be called from a high-level language. For
stand-alone assembly language programs, the .DATA segment may contain
uninitialized data.

Appendix G Assembler Directives 519

Data-Defining Directives

Directive Meaning
DB define byte
DD - . define doubleword (4 bytes)
DF define farword (6 bytes); used only with 80386 processor
DQ define quadword (8 bytes)
DT define tenbyte (10 bytes)
. DW define-word (2 bytes)
Syntax: . {name} directive initializer {,initializer)

where name is a variable name. If name is missing, memory is allocated but no
name is associated with it. Initializer is a constant, constant expression, or ?.
Multiple values may be defined by using the DUP operator. See Chapter 10.

DOSSEG

Tells the assembler to adopt the DOS segment-ordering convention. For a
SMALL model program, the order is code, data, stack. This directive should
appear before any segment definitions.

ELSE)
Used in a conditional block. The syntax is

Condition
. statementsl
ELSE
statements2
ENDIF

If Condition is true, statementsl are assembled; if Condition is false, state-
ments2 are assembled. See Chapter 13 for the form of Condition.

END

Syntax: END {start_address})

Ends a source program. Start_address is a name where executéon is to begin
when the program is loaded. For a program with only one sqtirce module,
start_address would ordinarily be the name of the main procedure or a label
indicating the first instruction. For a program with severak modules, each
module must have an END but only one of them can specif{ a start_address.
ENDIF

Ends a conditional block. Seé Chapter 13.

ENDM
Ends a macro or repeat block. See MACRO and REPT.

ENDP
Ends a procedure. See PROC.

ENDS .
Ends a segment or structure. See SEGMENT and STRUC.

520

Appendix G Assembler Directives

EQU o

Syntax: There are two forms, numeric equates and string equates. A numeric
equate has the form

name EQU numeric_expression

A string equate has the form

name EQU <string>

The EQU directive assigns the expression following EQU to the constant
symbol mame. Numeric_expression must evaluate to a number. The assembler
replaces each occurrence of name in a program by numeric_expression or
string. No memory is allocated for name. Name may not be redefined.

Examples: -

MAX EQU 32767

MIN EQU MAX - 10

PROMPT EQU <’'type a line of text:$'>
ARG EQU <[DI + 2)>

Use in a program:

.DATA

A MSG DB PROMPT
.CODE
MAIN PROC i
MOV AX,MIN ;equivalent to MOV AX, 32757
MOV BX, ARG ;equivalent to MOV BX, [DI+2])
= (equal)
Syntax: name = expression

where expression is an integer, constant expression, or a one or two-character

string constant. :
The directive = works like EQU, except that names defined with = can be
redefined later in a progiam.

Examples:
CTR = 1 :
MOV AX,CTR ;translates to MOV AX,1
CTR = CFR + 5 . ‘
: "MOV BX,CTR ;translates to MOV BX, 6

The = directive is often used in macros. See Chapter 13.

ERR Directives

These are conditional error directives that can be used to force the .
assembler to display an error message during asseimbly, for debugging pur-
poses. The assembler displays the message “Forced error”, with an identifying
number. Sece Chapter 13.

Directive Number Forced error if

.ERR1 . 87 encountered during assembly pass 1
ERR2 88 encountered during assembly pass 2
“ERR . - .. .89 " encountered)

.ERRE expression 90 expressioh is faise (0)

Appendix G Assembler Directives 521

.ERRNZ expression 91 expression is true {nonzero)
.ERRNDEF name 92 name has not been defined.
.ERRDEF name 93 name has been defined.
.ERRB <argument> 94 'argument is blank

.ERRNB <argument> g5 argument is not blank
.ERRIDN <arg1>,<arg2> 96 arg1 and arg2 are identizal
.ERRDIF <arg1>,<arg2> 97 . arg1 and arg2 are different
EVEN

4 N .
Advances the location counter to the next even address.

EXITM

Used in a macro or repeat block. Tells the assembler to terminate the macro
or repeat block expansion.

EXTRN
Syntax: .. EXTRN ;name:type : [, name:type]

Informs the assembler of an external name; that is, a name defined in another
module. Type must match the type declared for the name in the o:her mod-
ule. Type can be NEAR, FAR, PROC,” BYTE, WORD, DWORD, FWORD,
QWORD, TBYTE, or ABS. See Chapter 14:,

FARADATA and .FARDATA?

Syntax: .FARDATA (name}
.FARDATA? {name}

Used primarily with compilers for defining extra data segments.

GROUP
Syntax: name GROUP 'segment [, segment]

A group is a collection of segments that are associated with the same starting
address. Variables and labels defined in.the segments of the group are as-
signed addresses relative to the start of the group, rather than relative to the
beginning of the segments in which they are defined. This makes it possible
to refer to all the data in the group by initializing a single segment register.
Note: the same result can be obtained by giving the same name and a PUBLIC
attribute to all the segments.

iF directives

These directives are used to grant the assembler permission to assemble the
statements following the directives, depending on conditions. A list may be
found in Chapter 13. -

INCLUDE _
Syntax: * INCLUDE filespec

where filespec specifies a file containing valid assembly language statements.
In addition to a file namée; filespec may include a drive and path.

The directive causes the assembler to insert the contents of the file at the
“'position of the INCLUDE in the source fxle, and to begin processing the file’s
statements.

522

Appendix G Assembler Directives

Examples: INCLUCE MACLIB
INCLUDE C:\BIN\PROG1.ASM

LABEL
Syntax: name LABEL type

where type is BYTE, WORD, DWORD, FWORD, QWORD, TBYTE, or the
name of a previously-defined structure.
This directive provides a way to define or redefine the type associated with

a name, '

Example;
WORD_ARR LABEL WORD
BYTE_ARR DB 100 DUP (0)

Here WORD_ARR defines a 50-word array, and BYTE_ARR defines a 100-byte
array. The same address is assigned to both variables.

LALL

Causes the assembler to list all statements in a macro expansion, except
those preceded by a double semicolon.

{LIST and .XUST

.LIST causes the assembler to include the statements following the .LIST
directive in the source program listing. .XLIST causes the listing of the state-
ments following the .XLIST directive to be suppressed.

LOCAL
Syntax: LOCAL name {,name]

Used inside a macro. Each time the assembler encounters a LOCAL name
during macro expansion, it replaces it by a unique name of form ??number.
In this way duplicate names are avoided if the macro is called several times

in a program. See Chapter 13.
MACRO and ENDM
Syntax: name MACRO {parameter |[,parameter])})

These directives are used to define a macro.

Example:
EXCHANGE . MACRO WORD1, WORD2
PUSH WORD1
PUSH WORD2
POP WORDI1
POP WORD2
ENDI4
See Chapter 13.
.MODEL
Syntax: :MODEL memory_model

A simplified segment directive for defining a memory model. Memory model
can be any of the following:

Appendix G Assembler Diredves 523

Model Description
TINY . code and data in one segment
SMALL code in one segment

data in one segment

MEDIUM code in more than one segment
data in one segment

COMPACT code in one segment
data in more than one segment

LARGE code in more than one segment
data in more than one segment
no array larger than 64 KB

HUGE code in more than one segment
data in more than one segment
arrays may be larger than 64 KB

-ORG
Syntax: ORG expression

where expression must resolve to a 2-byte number.

Sets the location counter to the value of expression. For example, in a .COM
program, the directive ORG 100h sets the location counter to 10Jh, so that
variables will be assigned addresses relative to the start of the program, rather
than in the 100h-byte program segment prefix, which precedes the program
in memory. Another use of ORG is to define a data area that can be shared
by several variables. For example,

.DATA

WORD1_ARR DW 100 DUP (?)

ORG 0

WORD2_ARR DW 50 DUP (?)

WORD3_ARR DW 50 DUP (?)

This definition causes WORD2_ARR and the first 50 words in WORDI1_ARR
to occupy the same memory space. Similarly, WORD3_ARR and the last 50
words of WORD1_ARR occupy the same space.

%OuUT"
Syntax: $0UT text

where text is a line of ASCII characters.]
Used to display a message at a specified place in an assembly listir.g. Often
used during conditional assembly.

Example:
IFNDEF SuM

SuUM DW ?

$0UT SUM is defined here
ENDIF

If SUM had not been previously dex’med it would be defined here and the
message would be displayed.

324

Appendix G Assembler Directives

PAGE
Syntax: PAGE {{length},width}

where length is 10-255 and width is 60-132. Default values are length = 50
and width = 80.

Used to create a page break or to specify the maximum number of lines per
page and the maximum number of characters per line in a program listing.

Examples:

PAGE ;jcreates a page break

PAGE 50,70 " ;sets maximum page length to 50
;and maximum page width to 70

PAGE ,132 ;sets maximum page width to 132

PROC and ENDP

Syntax: name PROC distance

name ENDP

where distance is NEAR or FAR. Default is NEAR.
Used to begin and end a procedure definition. See Chapter 8.

Processor and Coprocessor Directives

The following directives define the instruction set recognized by
MASM. These directives must be placed outside segment declarations. In the
following, 8086 includes 8088. 8087, 80287, and 80387 arc coprocessors.

Directive Enables assembly of instructions for processors
and coprocessors
8086 8086, 8087
186 8086, 8087, and 80186 additional instructions
.286 8086, 80287, and additional 80286 nonprivileged instructions
.286P same as .286 plus 80286 privileged instructions
.386 8086, 80387 and 80286 and 80386 nonprivileged instructions
.336P same as .386 plus 80386 privileged instructions
.8087 8087, disables instructions unique to the 80287 and 80387
.287 8087, and 80287 additional instructions
.387 8087, 80287, and 80387 additional instructions
PUBLIC
Syntax: EfUSILlC rame [, name)
where name is a variable, label, or numeric equate defined in the module

containing the directive.

Used to make names in this mnodule available for use in other modules. Not
to be confused with the PUBLIC combine-type, which is used to combine
segments. See Chapter 14.

PURGE

Syntax: PURGE macronaume [, macroname}

where macroname is the name of a macro.

Appendix G Assembler Directives 525

Used to delete macros from memory during assembly. This might be neces-
sary if the system does not have enough memory to keep all the macros a
program needs in memory at the same time.

Example:

MAC1 ;expa‘nd macro MAC1
PURGE MAC1 ;don’t need it anymore
.RADIX

Syntax: .RADIX base

where base is a decimal number in the range 2-16.

Specifies the default radix for representation of integer constants. This means
that in the absence of a “b”, “d”, 'or “h” as the last character in the repre-
sentation of an integer, the assembler will assume the number is represented
in the base specified by the directive. The default is 10 (decimal).

Examples:

.DATA "y
.RADIX 16 ;hexadecimal

A DW 1101 ;interpreted as 1101h

.RADIX 2
B DW 1101 ;interpreted as '1101b

RECORD

Used to define a record variable. This is a byté or word variable in which
specific bit fields can be accessed symbolically. See the Microsoft Macro As-
sembler Programmer’s Guide.

REPT and ENDM

Syntax: REPT expression
statements
ENDM

where expression must evaluate to & 16-bit unsigned number.

Defines a repeat block. REPT causes the statements in the block to be assem-
bled the number of times equal to the value of expression. A repeat block
can be placed at the position where the statements are to be repeated, or it
can be put inside a macro. See Chapter 13. .

SALL

Causcs the assembler to suppress the listing of inacro expansions.

SEGMENT and ENDS

Syntax: - name SEGMENT f{align]} {combine} {’class’])
statements ’
name ENDS
where align is PARA, BYTE, WORD, or PAGE

combine is PUBLIC, COMMON, STACK, or AT
class is a name enclosed in single quotes

Thesé directive define a program segment. Align, combine, and class specify
how the segment will be aligned in memory, combined with other segments,
and ordered.with respect to other segments. See Chapter 14.

526

Appendix G Assembler Directives

.SEQ

Directs the assembler to leave the segments in their original order. Has the
same effect as .ALPHA.

STACK .

Syntax: .STACK {size}

where size is a positive integer.
A simplified segment directive which defines a stack segment of size bytes.

Default size is 1 kilobyte.

STRUC and ENDS

Used to declare a structure. This is a collection of data objects that can be
accessed symbolically as a single data object. See the chrosoﬁ Macro Assembler
Programmer’s Guide.

SUBTTL

Syntax: - SUBTTL (text}

Causes a subtitie of up to 60 characters to be placed on the third line of each
page in an assembly listing. May be used more than once.

TITLE

Syntax: TITLE {text}

Causes a title to be placed on each page of an assembly listing. May be used
only once,

XALL

Causes the assembler to list all statements in a macro expansion that produce
code. Comments are suppressed.

.XCREF
See .CREF.

XLIST
See .LIST.

Appendix

Keyboard Scan Codes

The keyboard communicates with the processor by scan ccdes as-
signed to the keys. When a key is pressed, the keyboard sends a make code
to the computer, and when a key is released a break code is sent. Table H.1
shows the make codes of the original 83-key IBM keyboard; a break ccde can
be obtained from the make codes by ORing it with 80h.

The INT 9 routine is responsible for getting the scan codes from the
1/0 port and placing an ASCII code and the scan code in the keyboard buffer.
We can classify the keys into ASCII keys, function keys, and shift keys. The
ASCII keys include the character keys, the space bar, and the control keys Esc,
Enter, Backspace, and Tab; these keys have corresponding ASCII codes. The
function keys include F1 to F10, the arrow keys, Pg Up, Pg Dn, Home, End, Ins,
and Del. These keys do not have ASCII codes, and a 0 is used to indicate a
function key in the keyboard buffer. The shift keys include left and right shifts,
Caps Lock, Ctrl, Alt, Num Lock, and Scroll Lock. The scan codes of the shift

‘keys are not placed in the keyboard buffer. Instead, the INT 9 routine us2s the

keyboard flags byte (address 0000:0417) to keep track of the shift keys. The
keyboard flags can be retrieved by using INT 16h, function 2.

When certain shift keys are down, the INT 9 routine places different
scan codes in the keyboard buffer to indicate key combinations. Table H.2
shows the scan codes for key combinations.

The 101-key enhanced keyboard uses a different set of make and
break codes. However, except for the new keys F11 and F12, the INT 9 routine
still generates the 83-key scan codes for the keyboard buffer to maintain
compatibility. Table H.3 shows the new scan code‘s/generated by the INT 9
routine for the enhanced keyboard. There are also some new combination
scan codes. These new scan codes can only be retrieved by INT 16h functions

10h and 11h. .
When the Ctrl key is dowan, INT 9 will generate different ASCII

codes for letter keys. Table H.4 shows the scan code and ASCII for the key
combinations.

527

528

Appendix H Keyboard Scan Codes

Table H.1

83-Key Keyboard Scan Codes

Hex Scan Key

Code
01
02
03
04
05
06
07
08
09
0A
08
0C
00
O
OF
10
11
12
13
14
15
16
17
18
19
1A
18
1C

m
A

O W RNV & WN =

=+
Back Space
Tab

TOTC<<K—=4®™®Mm35O

Hex Scan Key

Code
iD
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
28
2C
2D
2E
2F
30
3
32
33
34
35
36
37
38

Ctrl

PRSI O MO WV

.

‘

Left Shift
\I

T ZOW<<AXN

L <

.>

/1?

Right Shift .
Prt Sc

Alt

Héx Scan . Key
Code

39
3A
38
3C
3D

3€
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
ac
4D
aE
4f
50
51
52
53

Space bar
Cap_s Lock
Fi

F2

F3

F4

F5

F6

F7

F8

F9

F10

Num Lock
Scroll Lock

7 Home

3 Up Arrow
9 Pg Up

- (num)

4 Left Arrow
5 {num)

6 Right Arrow
+ (Rum)

1 End

2 Down Arrow
3pPgDn
Olns

Del .

Table H.2 Scan Codes for Comb}nation Keys

Scan
Code
54
55
56
57
58
59
SA
58
5C
S0
5€

SF

60

61

62

63

64

Keys

Shift F1
Shift F2
Shift F3
Shift F4
shift FS
Shift F6
Shift F7
Shift F8
shift F9
Shift F10
Ctrl F1
Ctrl F2
Ctl F3
Ctrl F4
Ctrl FS
Ctrl F6
Ctrl £7

Scan

. ;Code

65
66
67
68
69
6A
68
6C
6D
6E
6F
70
7
72
73
74

App

Keys
Ctrl F8
Ctrl F9
Alt F10
Alt F1
Alt F2
Alt F3
Alt F4
Alt F5
Alt F6
Alt F7
Alt F8 -
Alt F9
Alt F10
Ctrl PrtSc

Scan
Code

75
76
77
78
79
7A
78
7C
70
7€
7F
80
81
82

Ctrl Left Arrow 83
Ctrl Right Arrow 84

Table H.3 Scan Codes for Enhanced Keyboard

Scan
Code
85
86
87
88 °
89
8A
88
8C
8D
8t

8F

Keys

F11

F12
Shift F11
Shift F12
Ctrl F11
Ctri F12
Alt F11

AltF12

Ctrl Up Arrow
Ctrl - (num)
Cirl S (num)

Scan
Code
90
91
92
93
94
95
96
97
98
99

(num) means numeric keypad keys.

Keys

Ctrl + (num)
Ctri On Arrow
Ctrl Ins

Ctri Del

Ctrl Tab

Ctrl / {num)
Ctrl * {(num).
Ait Homé

Alt Up Arrow
Alt PgUp

Scan
Code
98
90
SF
AOD

eng.x H. Keyboard Scan Codes 529

Keys

Ctrl End
Ctrl 2gDn
Ctrl Home
Alt 1

Alt 2

Alt 3

Alt 4

Alt 5

Alt 6

Alt 7

Alt 8

Alt 9

Ait 0

Alt -

Alt =

Ctrl Pglip

Keys

Alt Left Arrow
Alt Right Arrow
Alt End

Alt Down Arrovs
Alt PgDn

Alt ins

Alt Del

Alt / (nun

Alt Tab

Alt Enter (num)

530

Appendix H Keyboard Scan Codes

Table H.4 ASCH Codes for Combination Keys

Keys

Cul A
Ctri B
Ctrd C
i D
Ctl €
Ctrl F
ctrl G
Ctri H
Ctrl
Ctrl g
Cirl K
ctrl L
Ctrl M

ASCIl
Code

—_

ON ®P» O 0O UV b WwahN

Scan
Code
1€
30

2E
20

12

21
22

23

17
24

25
26

32

Keys

CtrI N
Ctr1 O
Ctrl P
Ctrl Q
Ctri R
Ctrl S
T
Cul U
Cul v
Cul W
Ctrl X
canly
Cirl Z

AScll
Code
E

F

10

1

12
13
14
15
16
17
18
19
1A

Scan
Code
3
18
19
10
13
1F
14
16
2F
1
2D
15
2C

Index

$ (end of string), 73 _

HOUT assembler directive

* (asterisk), as DOS special character,
445)

; (semicolon), in assembly language
program, 14, 55

= (equal) pseudo«)p, in REPT macro,
268
_L(question mark), as DOS special char-
=~ actet, 445

A
AAA instruction (ASCII adjust for addi-
tion), 376-377, 491 '
AAD instruction (ASCII adjust for divi-
sion), 378-379, 491
AAM instruction (ASCII adjust for mul-
tiply), 378, 491-492
AAS'K struction (ASCII adjust for sub-
tractxon) 377-378, 492
Absolute disk read/write, DOS inter-
rupts for, 460
Accumulator register (AX), 40-41
Activation records, 361-363
Active display page, 235
selecting, 240, 450 -
ADC instruction (add with carry), 372,
492 -
ADD instruction, 62-63, 492 .
. flags and, 85, 88-89
overﬂow, 83-84, 85-86
Add-in boards or cards, 4
Addition
BCD, 376-377, 494-495 -
with carry flag, 372, 492
with Qcimal adjust, 494-495
. doubleprecision, 372-373

with 8087 processor, 384
instructions, 62-63, 376-377, 491,
492, 494-495 ’
number systems and, 24—25
overflow and, 83-85
Address, 4-S
base address of an array, 180
in call by reference, 302—303
contents vs., 5-6
display modes, CGA, 337
in instruction pointer (If), 9
loading (LEA instruction), 74,
498-499
‘logical, 42
of memory word, 6
physical, 41
Address bus, 7
in fetch-execute cycle, 10
Address register, 39
base register (BX) as, 41 -
Addressing modes, 181-189
See also Real address mode
arrays and, 179
based, 184-186
based indexed, 194-196
indexed, 185-186
register indirect, 182-183
string instructions vs., 208 -
AF (auxiliary carry flag), 82, 83
Align type of segment declaration,

292-293 °
All points addressable (APA) graphics
mode, 332

.ALPHA directive, 517
ALU (arithmetic and logic unit), 8

* American Standard Code for Informa-

tion Exchange. See ASCH charac-
ter codes

Analog monitor, for VGA, 340 -

AND conditions, high-level vs. assem-
bly languages, 103
AND instructions, 119-121, 492-493
TEST instruction and, 122 -
AND truth table, 118
Animation, 340, 341-347
APA (all points addressable) graphics
mode, 332
Appending records to file, 410-414
Application program interface (APl), In
0s8/2, 431, 433 :
Application programs, memory seg-
ments for, 47 .
Archive bit, 400
Arithmetic and logic unit (ALU),
Arithmetic operations)
See also specific operations
accumulator register (AX) for, $0-41
advanced, 371-394
binary-coded decimal number,
374-379
double-precision numbers, 371-374
8087 instrictions, 384
floating-point numbers, 379-331
nudtiple-precision manber /0,
384-388
with rcal mambers, 389-321"
in arithmetic and logic unit (ALU),
8
- werflow and, 83-88
pointer and index registers for, 44
shift instructions for, 117, 122-127,
504-505 ’ '
Array elements
Ses also Arrays
adding, 183
reversing order of, 183184
specifying addresses {or, 181 .
Anays 58-59

531

b v et — e o -

532" Index .

See also Array elements
addressing modes for, 181-189
application example, averaging test
scores, 195-197
one-dimensional, 179-181
processing, string instructions for,
205-228
role of, 179
sorting, sclectsort method, 189-192
two-duncensional, 179, 192-194
based indexed addressing mode for,
194-195
locating elements in, 193-194
storage order for, 192-193

Arrow Kevs. programming, 247-252
ASCH adjust instructions

tor addition (AAA), 376-377, 491
tor division (AAD), 378-379, 491
for multiply (AAM), 378, 491-492
for subtraction (AAS), 377-378, 492

A3CH character codes, 30-31, 441444

in arravs, S8-59

tor combination keys, 530

converting case of, 120-121

converting to numbers, AND in-
structions for, 120

display characters and, 234

extended character set, 443-444

in INT 21h instructions, 68

jump instructions and, 97

transjating to EBCDIC code,
197-200

ASCH digits, converting to packed

BCD, 385-386

ASCII Keys, 244
ASM tiles, assembly modules, 285
Assembler

See also Microsoft Macro Assembler
assembly language syntax for, 54
creating object file with, 70, 71-72
object modules produced by, 285
role of, 13

Assembler directives, 54, 517-526

See also specific directives
arrays, 58-59

byte variables, 56
operand fields in, 55
pseudo-ops, 55

word vatiables, 56-57

Assembly language
. Sce wlso Assembly language pro-

grams

advantages of, 13-14

described, 12-13

high-level language translation to,
64-65

sample, stack use, 144-145

Assembly language programs, 53-80

appending tecords to a file, .
410-414

averaging test scores, 195-197

ball bounce, 344-347

ball display, 342-344

basic instructions, 60-64

case conversion, 120-121, 287-289
coding and decoding secret mes-
sage, 198-200
combined 8087/8086 instructions,
387-388
converting ASCII digits to packed
BCD, 385-386
counting vowels and consonants,
215-217
creating and running, 70-73
designing, top-down method,
108-112
echo, 432433
extended memory management,
427-429
“Hello” messages, 431-432
.EXE vs. .COM format, 283-284
INT 10h example, 243-244
jump instruction example, 93-94
macro expansions in .LST file,
259-261
macro library use in, 266-267
named constants, 59
0s/2, 431433
printing packed BCD integers,
386-387
printing real numbers, 390-391
procedures in, 146-147
program data, 56-57
reading and displaying a file,
406-409
reading real numbers, 389-390
reading and Moring a character
string, 209-211
recursive procedures in, 363-369
sample, 14-18, 69-70, 75-76
with high-level structures, 108-112
multiplication procedure, 150-157
stacks in, 139-145
structure of, 65-67
substring search, 220-222
syntax, 54-56
terminating, 70
for time display, 316-318
top-down design of, 108-112
variables, $7-59 '
Assembly modules, 285
tinking, 287-291
Assembly time, macros vs. procedures
and, 276
ASSUME pseudo-op, 295, 517
Asterisk (*), as DOS special character,
445 -
Attribute byte (display character),
235-237
Attribute byte (file attribute), 400, 401
Attributes of characters, 234
current, for character at cursor, 242
Auxillary carry flag (AF), 82, 83
Averaging t.st scores, 195-197
AX (accur alator register), 4041

B

Background color, 334, 451

BACKUP (DOS program), 445
archive bit and, 400

Ball display, 342-344

Bail mantpulation
for animation, 344-347
in interactive video game, 347,

349-350

Base, in number systems, 20

Base address of an array, 180

Base pointer (BP) register, 45

Base register (BX), 41

Based addressing mode, 184-185
segment overrides in, 189

Based indexed addressing mode,

194-196
Basic Input/Output System routines
See BIOS routines
BASIC intertupt (Interrupt 18h), 31
BCD. See Binary-coded decimal nun
" ber system

BEEP procedure, 348-349

Bias, 380
Binary digits (bits), 3
Binary fractions, converting decima.
fractions to, 379-380
Binary number system, 19, 20
addition and subtraction in, 25
ASCII codes in, 31-32
decimal and hex conversions,
22-23
decimal and hex equivalents, 20,
21
in program data, 56
two's complements, 26-28
Binary-coded decimal number system
(BCD), 374-379
addition (AAA instruction),
376-377
division (AAD instruction), 378-379
8087 numeric processor and, 381~
382, 384-388
multiplication (AAM instruction}}
378
packed vs, unpacked BCD form,
375
subtraction (AAS instructlon),
377-378
BIOS (Basic Input/Output System) rou-
tines, 46-47
intetrupt routines, 67-69, 310-316,
449-455
ASCII code display and, 246
keyboard functious, 246-247
text mode display functions,
238-244
In start-up operation, 49
Bit patterns ’
masks, 119
modifying
applications for, 130-134

logic instructions for, 117, 118~
122, 492493, 501, 508
rotate instructions for, 117, 122,
127-130, 502-503, 504
shift instructions for. See Shift in-
structions
Bit planes .
in £GA dispiay memory, 339
m VGA display mepiory, 340
Bit positions, 6
Bit scan instructions (80386), 513
Bit strings, 3
machine language, 7, 12.
"Bir test instructions, 513-514
~cBits (binary digits), 3
See also Bit patterns; Bit strings
flags, 45
least significant (Isb), 26
manipulating, high-level vs. assem-
bly language and 117
uask, 119
mu.st significant (msb), 26
31U See Bus interface unit
Bhinking bit, 235, 236
Boct program, 49

Bootstrap interrupt (lnterrfxpt 1%h), 315

Border, setting color for, 451
Bouncing ball program, 342-347
interactive video game from, -
347-355
BOUND instruction, in 80286, 423
,—;BP (base pointer) register, 45
“Branching structures, high-level vs. as-
sembly languages, 98-104
BREAK, checking status of, 457
Break code, 245
Breakpoint intesrupt (Interrupt 3), 313
Buffer, keyboard, 246"
Bus interface unit (BIU), 8,9
connection to EU, 9
in fetch-execute cycle, 10
Buses, 7
Jocking, 499
BXZ(base register), 41
B)‘!e arrays. See Character strings; Mcem-
ory strings
Bvte variables, 57
Bytes, 4
bit positions in, 6 . .
changing bit patterns in, 117
converting to words, 167, 493
disk capacity, 398-399
dividing, 165, 167
hex digits and, 20
integer storage in, 26~-28
multiplying, 162

C

activation records of, 361-363
direct vs. indirect, 147
NEAR vs. FAR procedures and, 286

CALMnstructions. 146, 147-149, 493

«

in OS/Z 431
in program example, ISl 152 153,
- 154
in recursive procedures, 357-369
using stack with, 303-305, 360-361
Call by reference, 302-303
Call by value, 302
Carriage return-line feed, macro for,
265 .
Carry flag {CF), 82 .
clearing, (CLC mstrucuon), 493 °
comp]ementmg (C\AC mstrucuon), .
494
setting (STC instruction), 506
Case, for assembly language code, 54
Case conversion program, 75-76
CASE structure, high-level vs. assembly
languages, 101-103
Cassette interrupt (interrupt 15h), 314,
454
CBW instruction (convert byte to
word), 167, 493
Central processing unit (CPU), 4, 7- 9
bus interface unit (BIU), 8, 9
execution unit (EU), 8 ,
jump instructions and, 95, 97
CF (carry flag), 82 ’
CGA. Sez Color graphics adaptas

. Character cell, 233 L.
+ Character rc’p'es—“ntanon 30—33)

Character strings !
in arrays, 58-59
counting vowcis and consonants
in, 215-217 :
displaying, 73-75°
DISP_STR procedure for, 212—214
macro for, 265-266
reading and sworing,
Charactels
attribute bytes and, 235-237
attributes of, 234,
at cursor
dispiaying and uJ\ ancing cursor,
243 -
dispiaying with any. attribute, 242~
displaying with current atiribute,
242
in program datda, 56
reading, 241
reading from keyboard, 458
writing to printer, 455°
CHDIR (CD), 447448, 458
CLC instruction (clear carry tlag), 493
CLD instruction (clear direction flag),

209-211

206, 493
Clear (destination bit), AND .nstruc-
tion for, 119,.121 N

Clear Screen (CLS), 445
Clearing flags, instructions for, 493
CLI (clear interrupt tlag). 493
Clock circuit)
Interrupt 1Ah and, 315
tone gencration and, 347

Clock period, 11

Index 533

Clock pulses, 10-11
Clock rate (clock speed), 11
Closing a file, 404405, 457
CLS (cleur screen), 448
Clusters, 400
CMC instruction (complement carry
flag), 494
CMP instruction (compare), 494
jump conditions and, 95, 97
OR instruction vs., 121
CMPS instruction, 223, 494
CMPSB instruction (compare string =~
byte), 217-222 223, 494
CMPSW mstrucuon {compare string
word), 217, 494
-CODE assembler directive, (.6 299,
517
in sample p'ogram, 76
Code segment, 15, 44
.COM programs and, 281..
declaration syntax, 65 °
CODEVIEW program, 479468
DEBUG comunands in, 488
Coding and decoding a secret message,
198-200
Color display, 235, 236
BIOS interrupt routines, 451,
452-453
Color graphics, 331-356
display modes, 331-332
CGA, 332, 333-339
EGA, 332, 339-340
selecting, 332-333
VGA, 332, 340-341
Color graphics adapter (CGA), 232, 233
changing cursor size for, 233
graphics display modes, 332,
333-339
number of display pages for, 234
pixel size and, 332
port address, 48
selecting active display page for,
240
selecting display mode for, 238
writing directly to memory in,
337-338
Color graphics adapter types, 331. Sex
wlsu spedific ypes
Color monitor, 232. See also Color dis-
“play
Color registers
getting, 453 °
setting (VGA), 340, 341, 452-453
Column-major order, array storage in,
192, 193
COM 1/COM 2, See Serial ports
.COM programs, 281-285
.EXE programs vs., 281, 282-23%

i

. Combine.type of segment declaration,

293-294
.COMM assembiler directive, 517-31¥%

" COMMAND.COM, 46

Command line
CODEVIEW, 479

534 Index

LINK program, 467448
Microsoft Macro Assembler (MAIM),
462-463
Commands
DEBUG, 473-474
DOS, 445448
internal vs. external, 46
Comments
in assembly language programs, 14,
518
comment field syntax, 54, $5-56
for documenting procedures, 147
using, 55-56
Comimunications interrupt (Interrupt
14h), 314 .
COMPACT mcemory model, 299
Compare instruction. See CMP instruc-
tion
Comparing memory strings, 217-222
Compiler, role of, 13
Complement (destination bit), XOR in-
~ struction for, 119, 120
Complement carry-flag (CMC instruc-
tion), 494
Composite monitor, 232
Computers. See 1BM personal comput-
ers
Conditional jump instructions, 94-97,
197-498
high-level vs. assembly language
structures, 98-104
Conditional loop instructions
REPEAT loop, 107-108
WHILE loop, 106~-107
WHILE vs. REPEAT, 108
Conditional macros, 272-275
Conditional pseudo-ops, 272-273
for macro library, 264~26S$
Consonants, counting, 215-217
{CONST pseudo-op, 299, 300, 518
Constants, named, S9
Contents, address vs., 5-6
Control bus, 7
in fetch-execute cycle, 10
Control characters, 31, 32
in INT 21h iastructiuns, 68-69
Control flags, 45, 81, 82, 205
DEBUG example, 88, 89
direction flag (DF), 205-206
in interrupt routine, 312 .
Control keys, 244
Conventional memory, Interrupt 12h
and, 313-314, 453
COPY (DOS command), 445
Count register (CX), 41
CPU. See Central processing unit
CREF utility program, 461, 466467
Cross-reference (.CRF) file, 72, 461,
466~467, 518
S (instruction register), 45
Ctr)-Break (Interrupt 1Bh), 315
CTRL-BREAK check (Interrupt 21h),
457
CTRL-Z (end of data), 410

Cursor
advancing to next position, 243
changing size of, 238-239, 449
displaying character with attribute
at, 241, 242, 451
getting position and size of, 239-
240, 450
moving on screen, 239, 450
programming arrow keys for,
247-252
reading character at, 241
restoring position of, 320
writing character and attribute at,
451
CWD instruction {convert word to
doubleword), 166-167, 494
CX (count register), 41
Cylinder, 397-398

D
DAA instruction, 494495
Daisy wheel printers, 12
DAS instruction, 494
Data calls, by value and reterence, 302-
303. Sec also CALL instructions
Data bus, 7
in fetch-execute cycle, 10
microprocessors and, 38, 39
.DATA dircctive, 66, 299, 518-519
assembler and, 74-75
in sample program, 76
.DATA? pseudo-op, 299, 300, 518-519
Data register (DX), in 8086, 39, 40-41
Data registers, in 8087, 382
Data segment, 15, 44
.COM programs and, 281
.DATA directive for, 66
declaration syntax, 66
Data scgiment register, loading, 498
Data storage, in registers, 8
Data transfer area (DTA), 401
Data transfer instructions
accumulator register (AX), 4041
MOV instruction, 60, 61
Datu types, 8087 numeric processor,
381-382, 508
Data-defining pseudo-ops, variables
and, §7-59
DATE (DOS command), 446
Date, INT 21h functions and, 456457
DEBUG program, 87-90, $71-478
CODEVIEW and, 488
commands, 473474
exiting, 90
flags shown in, 87-90, 472
interrupt routine and, 312
memory dumps, 477

- Debuggers. See CODEVIEW program;

DEBUG program
Debugging, source listing (.LST) file
for, 72 ‘
DEC instruction (decrement), 62, 495

jump instruction and, 97
overflow and, 85
Decimal adjust for addition/subtrac-
tion, 494-495
Decimal fractions, converting to bi-
nary, 379-380
Decimal input, INDEC procedure for,
170-175
Decimal number system, 19-20
addition and subtraction in, 24, 2§
ASCII codes in, 31-32
binary and hex conversions, 22-23
binary and hexadecimal equiva-
lents, 21
binary-coded, 374-379
8087 numeric processor and, 381—
382, 384-388
in program data, 56
signad and unsigned integer repre-
sentation, 28-30
Decimal output, OUTDEC procedure
for, 167-170
Decision making, flags and, 81
Decoder circuit, in fetch-execute cycle,
10
Decoding program, 198-200
Decrement instruction. See DEC in-
struction
DEL (DOS command), 446
Deleting a file, DOS interrupt for, 459
Destination index (DI) register), 45
Destination operand, 5§
Devices
1/0, 3, 11-12
peripheral, 3
serial vs. parallel port, 9
DF. See Direction flag
DI (destination index) reglster, 45
Digital circuits, 3
DIR (directory list), 446
Direct mode, 181, 182
Direct procedure call, 147
Direction flag (DF), 205-206
clearing and setting, 206, 493, 506
Directives. See Pscudo-operation code;
specific directives
Directory, getting, 459-460
Directory structure, 399402, 447448
Disjoint memory segments, 47
Disk controller circuit, access con-
trolled by, 399
Disk drives, 11, 298
Disk 1/0O interrupt (Interrupt 13h),
314, 453-454
Disk operating system. See DOS
Disk operations, 395
DOS interrupts and, 415-418
Disk space; checking, 458
Diskette error (Interrupt E), 313
Disks
See also Floppy disks; Hard disks
accessing information on, 399
capacity of, 398-399
clusters on, 400

i\

FAT location on, 401
file allocation on, 399-402
structure of, 397-398
types of, 395-397
DISP_STR procedure, 212-214
Displacement, 184
Display
INT 10h functions and, 238-244,
449-455 '
INT 21h functions and, 456
screen positions, 234
scrolling screen or window
up/down, 240-241, 450451
Display memory (video buffer), 232
~eDisplay modes, 232-233

-t_: getting, 243, 452

selecting, 238, 445
Display monitor. See Monitor
Display pages, 234
active, 235
selecting, 240, 450
attribute bytes in, 235-237
sample program, 237-238
Displaying a file, program for, 406409
DIV instruction (divide), 165-167, 495
Divide overflow, 165-166
BIOS interrupt rounne (Interrupt 0),
312
processor exception for, 310
Division
ASCII adjust for (AAD) instruction,
378-379, 491
o« BCD, 378-379
~ data register (DX) for, 41
DiV/IDIV instructions for, 161, 165-
167, 495, 496
double-precision, 374
with 8087 processor, 384
methods for, 127 |
shift insttuctions for, 117, 122,
125-127
Do_FUNCTION procedure, for pro-
gramming arrow keys, 247-252
Dollar sign ($), for string display, 73
> (disk operating system), 46
commdnds, listed, 445448
directory structure, 400402,
447-448
disk structure and, 397, 398
file processing, 402-415

INT (interrupt) instructions for. See

DOS interrupts -
programs for 80286, 424
retuming to, 265, 316
versions, 46, 457

DOS interrupts, 7-69, 316, 456-460
See also specific internupts
file handle functions, 402-415
for reading and writing sectors,

415418
DOS prompt (C), COMMAND.COM
nd, 46 .

DOSSEG dlrecuye, 519
Dot matrix printers, 12

Double-density drives and disks, 398
Double-precision numbers,-371-374
adding, subtracting, or negating,
372-373
multiplying and dividing, 374
shift instructions, 515-516
Doublewords, converting words to,
. 166167, 494
DTA (data transfer area), 401
DUP pseudo-op (duplicate), 180-181
DX (data rggister), 41)
Dynamic linking, in 0§/2, 43 1

EBCDIC code, translating ASCII code
“to, 197-200
ECD (enhanced color display) monitor,
339
EGA. See Enhanced graphics adapter
8086 microprocessor)
clock rate of, 11 ...
coordination with 8087 processor,
382-383, 387-388
fetch-cxecute cycle in;, 10
flags and, 81
hardware interrupts, 309-310
IBM PC family and, 37, 38
instruction format, 489-490
instructions, listed, 490~508
organization of, 7, 8-9, 3945
virtual 8086 mode, 434
8088 microprocessor, 38.
80186 microprocessor, 38
80188 microprocessor, .38
80286 microprocessor, 38, 421429
instructions, S11-513
0§/2 and, 430 :
Windows 3 and, 430
80386/80386SX microprocessors, 38-
39, 433436
instructions, S13-516
08/2 and, 430
programming, 434-436
windows 3 and, 430
80486/804865X microprocessors, 39,
433 .
* Wiggows 3 and, 430 .

. 80387 numeric processor, 39
.. 8087 numecric processor, 381-391

coordination with 8086 micropro-
cessor, 382-383, 387-388
data types, 381-382, 508
instructions for, 382-384, 508-511
registers, 382
.8087 pseudo-op, 387
8259 chip (interrupt controller), 313
ELSE pseudo-op, in macros, 272, 273,
274, 275, 5§19
Empty stack, 140
Encoding and decoding a message, .
198-200

kY

" END directive, 67, $19

Index 535

in sample program, 76
ENDIF pseudo-op, macro file and, 265,
520
ENDM pscudo-op (end macro defini-
tion), 257, 258, 520, 522, 52§
ENDP pseudo-op (end procedure), 519,
524
ENDS directive (declare structure), 526
ENDS pseudo-op (end segment or struc-
ture), 519, 525
Enhanced color display (ECD) moni-
tor, 339
Enhanced graphics adapter (EGA), 232,
233,
339-340
changing cursor size for, 238
graphics display modes, 332, 339~
340)
number of display pages for, 234
port address, 48
selecting active display page for, 240
Enhanced keyboard, scan codes for,
529
ENTER instruction, in 80286, 423
EQU (equates) pscudo-op, 59, 75, 520
Equal (=) pseudo-op, in REPT macro,
268
Equipment check interrupt (Interrupt
11h), 313, 314, 453
ERASE (DOS command), 446
.ERR directives, 520-521
for incorrect macro, 275
Errors, in macro expansion, 262
ESC instruction (escape), 495
EU. Se¢ Execution unit
EVEN directive, 521
Exchange instruction. See XCHG in-
struction
EXE2BIN (DOS utility), .EXE programs
vs. .COM programs and, 284-285
.EXE program
.COM program vs., 281, 282~285
creating, 73
from library file, 289-291
from object modules, 287-289
with full segment definitions,
295-298
Execution of instructions, 9-11
Execution time, macros vs. procadures
and, 276
Execution unit (EU), 8
connection to BIU, 9)
EXIT (terminate process), Interrupt
21h for, 460
Exiting DEBUG program, 90
EXITM assembler directive, 521
Expanding a macro, 258 '
Expansion slots, 4
Exponent, 380 .
Extended Binary Coded Decimal ‘nter-
change Code. See EBCDIC code
Extended character set, 31, 443444
Extended instruction set
" in 80286, 421, 422-423

536 index -

iccoprocessors and, 38
fatended memory, 426-429
RiC'S interrupts, 454
tatended-memory manager programs,
426
Lxtension instructions, S14
Lxterital commands, 46
EXTRN pseudo-op, 286, 521

ADD instruction (add real), 384, 508
AR provedures, 146, 285-286
FARC-ATA/FARDATA? disectives, 521
FAT Sie File allocation table
FBLD 1astruction (packed BCD load),
i'l 5()9
\BST!‘ instruction (packcd BCI) store
and pop), 383, 509
DIV instruction (divide rcal), 384, 509
Fetch-execute cycle, 9-10
racnine language for, 12
timing ot, 10-11
FEADLD instruction (inleger add), 384,
]
FHMY struction (integer divide), 384,
09
ficlds, in assembly language syntax,
5456
D instructicn (integer load), 383,
509
Vile allocetion table (FAT), 401402
displayving, 417-418
File attritute, 400, 401, 403
changing, 414-415
spevifying, 403
File errors, 403
File exteinsion, 46
.ASM (asserr.bly language source
filey, 7C
Fite handles, 402403
closing, 439
File name. 46
special characters with, 445
lile pointer, 410
appending records to file with,
~106-414
moving, 4.9
tile ize. cluster size and, 400
Files, 46
allocaticn of on disk, 399-402 °
appending records to, 410-414
changing attributes of, 414-415
creating, 457
directory siructure, 400
opening and closing, 103-40S,
$58-459
processing of, tile handle functions,
40:-415. See also specific func-
tions
programn inodule, 285-291
reading, 402, 408
reading and displaying, 406409

F
I
I

rewriting, 402, 403404
writing, 402, 406
FIMUL instruction (integer multiply),
384, 509
Firmware, 7
FIST instruction (integer store), 383,

FISTP instruction (integer store and
pop), 383, 510
FISUB instruction (integer subtract),
384, 510
Fixed disk. Sce Hard disk
Flags, 81 A
clearing, instructions for, 493
instructions and, 85-87
AND, OR, XOR, 119, 492493,
501, 508
CMP example, 95, 97 -
DEBUG, 87-90, 472
junps, 95
rotates, 129
shifts, 123, 128
in interrupt routine, 312
loading AH from (LAHF instruc-
tion}, 498
overflow and, 83-85
FLAGS register, 39, 40, 45, 81-83
in interrupt routine, 310, 312
jump instructions and, 98
storing AH in (SAHF instruction),
504
FLD instruction (load real), 383, 510
Floating-point numbers, 379-381
8087 processor and, 381-391
80486 processor and, 39, 433
tepresentation of, 380
Floppy disks, 11, 395-396, 397
See alsu Disks
capacity of, 398, 399
file allocation on, 399402
Flow control instructions, 93-116
jump insteuctions, 93-98
FMUL instruction (multiply real), 384,
510
FOR loop, high-level vs. assembly lan-
guage, 104-106
“Forced error” message, for incorrect
macro, 275
FORMAT (DOS command), 446
status byte and, 400
Fractions. Se¢ Real numbers
FST instruction (store real), 383, 510
FSTP instruction (store real and pop),
383, 510
FSUI instruction (subtract rcal), 384,
510-511
Function key commands, CODEVIEW,
481-482
Function keys, 24$
pxogrammmg, for screen editor,
247-252 .
scan codes for, 245
Function requests. See specific interrupts

FWAIT instruction (suspend 8086 pro-
cessor), 387

G
Game, interactive video, 347-355
Game controller, port address, 48
Globa! descriptor table, 425, 426, 427
Global descriptor table register
(GDTR), 425
Global variables, 300-302
Graphical user interface (GUI), 46, 430
Graphics modes, 232-233, 331-333
animation techniques, 341-347
CGA, 332, 333-339
displaying text in, 338-339
EGA, 339-340
selecting, 332~-333
VGA, 332, 340-341
Graphics pixels, reading or writing,
335, 452
Gray scale; 232
GROUP assembler directive, 521
GUI (graphical user interface), 46, 430

N

Halt instruction (HLT), 495

Hand-shaking, 310

Hard disks, 11, 395, 396-397, 398
See also Disks
capacity of, 398, 399
file allocation table (FAT) on, 401
port address, 48
structure of, 397-398

Hardcopy, 12

Hardware components
BIOS routines and, 46
microcomputers, 3-9
software vs., 45

Hardware interrupts, 309-310
IF (interrupt flag) and, 312
nonmaskable (NMl), 312

Hex error codes, file handling errors.

403
Hex numbers. See Hexadecimal num-
ber system

Hexadecimal number system, 19, 20-22
addition and subtraction in, 24-25
ASCII codes in, 31-32
decimal and binary conversions,

22-23
digital and binary equivalents, 19,
21

in program data, 56
HEX_OUT macro, 270-272
Hidden, changing file attribute to, 415
Hidden files, 400
High resolution mode, CGA, 336
High-density drives and disks, 398 4
High-level instructions, in 80286, 4§23
High-level languages, 13

advantages of, 13

<~

“Icons, in Windows program, 430

bit pattern changes and, 117
fump instructions and, 98-104
loop structures and, 104-108
program design with, 108-112
translated to assembly language,
64-65
HLT instruction (halt), 495
Holding register, in fetch-cxecute cy-
cle, 10
HUGE memory model, 299. .

J . S
IBM character set, 441-444
" displaying, sample program for,
93-94
IBM mainframes, EBCDIC code used
by, 197
IBM personal computers
extended character set for, 31
keyboard, 244-247
scan codes, 33, 245-246, 527-529
monitor for, 231-232
organization of, 37-52, 4549
1/O port addresses, 49
memory, 4748
operating system, 46—47
start-up operation, 49
text mode programming for,
234-244" :
video adapters and display modes,
232-233

IDIV instruction (integer dxv:de), 165~
167, 496 . -
IF assembler directives, 521
IF (constant exp is nonzero), 273
IF (interrupt flag), 45
in interrupt routine, 312
IF1 (assembler making first pass), 273
macro file and, 264-265
IF2 (assembler making second pass),
- 273
IFY (arg is missing), 273
IFDEF (symbol is defined or EXTRN),
273 -
IFDIF (strings are not xdenucal), 273
IFE (exp is zero), 273
IFIDN (strings are identical), 273
IFNB (arg is not missing), 273
macro using, 274 .
IFNDEF (symbol is not defmed or EX-
TRN), 273 ..
IF-THEN structure, 98-99
[F-THEN-ELSE structure, 100-101
Immediate mode, 181, 182 -
IMUL instruction (integer multiply),
161-164, 496
in 80286, 422, 511 .
IN Qstmmon (input byte or word),
496 - Tee
for accessing timer circuit, 348
INC (increment) instruction, 63, 496

flags and overflow with, 85, 86,
89-90 .
INCLUDE pscudo-op, 169-170,
- §21-522 ‘
macro library and, 264
INDEC procedure, 170-175
Indefinite repeat (IRP) macro, 269-270
Index registers, 39, 40
direction flags and, 205-206
Indexed addressing mode, 185
segment overrides in, 189
Indirect procedure call, 147, 304,
Input overflow, 174
Input/output addresses, 9
Input/output (1/0) devices, 3, 11-12.
See also Interrupt routines
Input/output operations
accumulator register (AX) for, 41
data register (DX) for, 41
with 8087 processor, 384391
with 80286 processor, $11-512
instruction syntax, 67-69
multiple-precision integer, 384-388
in 08/2, 431433
real number, 389-391
shift and rotate instructions in,
130-134
Input/output ports, 9
port addresses, 48-49
Ins (Insert) key, 245-246
INS instruction (input from port to
string), 511
INSB instruction (input strlng byte),
423, 511
Instruction pointer (IP), 9,45
jump instructions and, 95
Instruction prefetch, 9
Instruction qucue, 9
Instruction set, 8
Instructions, 54
See also specific instructions; specific
types
assembly language, 12-13, 14, 15
basic, 60-64
syntax, 54
creating, macros for, 258
8086, 490-508
8087 numcric processor, 382-384,
© 508-511
combining with 8086 mstruclums,
387-388
80286, 511-513
80386, 513-516
execution of, 9-11 .
flags and, 85-87
DEBUG example, 87—90
flow control, 93-116. See also Jump
instructions . B
format for, 489-490 .
logic, 117, 118-122 . . .
machine language, 7, 12
rotate, 117, 127-130 .
in binary 1/0, 130-131
in hex /O, 131-134

Index 837

shift, 117, 122-127
in binary IfO, 130-131
in hex 1/O, 131-134
. string, 205-228
INSW instruction (input stnug word),
423, 511
INT instruction (interrupt), 67-69,
310. 3i2, 496497
Integer operands, 8087 instructions,
384
Integers, representation of, 26-28
Intcgrated-circuit (IC) chips, 3
Intel 8259 chip (interrupt controller),
313 -
Intel microprocessors, 37-39 421-438.
See also specific microprocessors
Intensity bit, 235, 236
Interactive video game, 347-355
Internal commands, 46
Interrupt O (divide overilow), 312
Interrupt 1 (single step), 312, 450
Interrupt 1Ah (time of day;, 318 °
Intecrupt 18h (Ctrl-Break), 315
Interrupt 1Ch (timer tick), 316
time updating program with,
318-322
interrupt 1Dh-Interrupt 1H1 316
Interrupt 2 (nonmaskable iaterrupt),
312
Interrupt 3 (breakpoint), 313
Interrupt 4 (overflow), 313
Interrupt S (print screen), 313
Interrupt 8 (timer), 313
timer tick interrupt and, 316
interrupt 9 (keyboard), 313
Ctrl-Break interrupt and, 315
lnterrupt 10h (video), 313, 332,
449-453
listed, 238-243
programming cxamples, 243-244
for palette or background color
(CGA), 334
for reading/writing graphics pxxcls
(CGA), 335
for sclecting display page (EGA),
340 .
for setting color register (VGA), 341
in text mode, 238-244
for time display, 325, 326
interrupt 11h (equipment check), 313,
314, 453
Interrupt 1Zh (memory size;, 313, 453
Interrupt 13h (disk 1/0), 314, 453-454
Interrupt 14h (communications), 314
Interrupt 1Sh (cassette), 314, 454
Interrupt 15h (extended memory),
426429
Interrupt 16h (keyboard 1/0), 314, 455
keyboard scrvices with, 246-247
Interrupt 17h (printer 1/0), 314—315
45$- .
Interrupt 18h (BASIC), 315 ,i- .
Interrupt 19h (bootstrap), 315
Interrupt 20h (program terminate), 316

538 Index

Interrupt 21h functions, 67-69, 316
ASCII Code display and, 246
for displaying a string, 73-75
file errors with, 403
tile handle functions, 402415
clranging o file's attribute, 414415
moving file pointer, 410-414
opening and closing files, 403-405
reading a file, 405
writing a file, 406
in sample program, 75, 76
for time-of-day display, 316-318
Interrupt 22h - Interrupt 26h (DOS in-
terrupts), 316
Interrupt 25h (read sector), 415, 416
Interrupt 26h (write sector), 415
Interrupt 27h (terminate but stay resi-
dent), 316
time display program with, 322-329
Interrupt acknowledge signal, 310
Interrupt controller, 313
port address, 48
Interrupt E (diskette error), 313
Interrupt flag (IF), 45
clearing, 493
in interrupt routine, 312°
setting (ST1 instruction), 506
Interrupt instruction (INT), 67-69,
310, 312, 496497
Interrupt number, 310
Interrupt request signal, 309
Interrupt routines, 309
address calculation for, 310-311
returning from (IRET instruction),
312, 497
in time display programs, 316-329
Interrupt vector table, 311
Interrupt vectors, 47, 310-311
getting addresses of, 457458
setting up, 319
interrupts
BIOS, 310, 312—-16. See also specific
interrupts
DOS, 316
hardware, 309-310
nonmaskable (NMI), 312
processor exception, 310
software, 310
INTO instruction (interrupt if over-
tlow), 497
Invoking a macro, 258
1/Q. Sce entries beginning with “Input/out-
s put”
I (instruction pointer), 9, 45
jutnp instructions and, 95
IRET instruction (interrupt return),
312, 497
IRP macro (indefinite repeat), 269-270

lump instructions, 93-98, 497498
CMP instruction and, 95, 97

conditional, 94-97, 437498

" high-level vs. assembly language
structures, 98~104

example, 93-94

high-level languages and, 98-104

JMP (unconditional jump), 98, 498

JNZ (jump if not zero), 94, 95

role of, 93 .

K
KB (kilobyte), 11
Keyboard, 11, 244-247
ASCII code and, 21, 22
hardware interrupts and, 309
INT 16h functions, 246-247, 455
INT 21h functions, 456, 457
operation of, 246
scan codes, 33, 245-246, 527-529
Keyboard buffer, 246
Keyboard controller, port address, 48
Keyboard flags, 245-246
Keyboard interrupt (Interrupt 9), 313
Keyboard 1/0 interrupt (interrupt
16h), 314
Kilobyte (KB), 11

L
LABEL pseudo-op (declare operand
type), 187-188, 522
Labels
cross-reference file and, 72
of macros, 262-263
LAHF instruction (load AH from flags),
498
.LALL (list all), 522
for macro expansions, 261, 262
LARGE memory model, 299
Laser printers, 12
LDS instruction (Joad data segment reg-
ister), 498
LDTR (local descriptor tabid register),
425
LEA instruction (load effective ad-
dress), 74, 498—499
in sample program, 75, 76
Least significant bit (Isb), 26 -
‘LEAVE instruction, in 80286, 423
LES instruction (load extra segment
register), 499
LIB utility, 289-291
Library files
for macros, 264-266
for object modules, 289-291
in 08/2, 431
Line feed/carriage return, macro for,
265
LINK program, 73, 467-469
command line, 467-448
example, 468-469
.EXE programs vs. .COM programs
and, 284-285

-~

library files and, 289-291
object modules combined by, 285,
286~287, 467
Linking, in 0S/2, 431 .
List file, as MASM output, 461
.LIST assembler directives, 522
Lists. See Arrays
Load Effective Address. See LEA instruc-
tion
Load instructions, for 8087, 383
Loading memory strings, 211-214
Local descriptor table, 424425
multitasking and, 426
Local descriptor table register (LDTR),
425
Local labels, in macros, 262-263

- LOCAL pseudo-op, 262-263, §13
- Location counter (MASM), 464, 466

ORG 100h and, 282
LOCK instruction (lock bus), 499
LODS instruction, 223, 499
LODSB instruction (load string byte),
211-214, 223, 499
LODSW instruction (load string word),
211, 223, 499
Logic instructions, 117, 118-122
accumulator register (AX) for, 40-41
AND, OR, XOR, 119-121, 492493,
501, 508
role of, 117
Logic operations, in arithmetic and
logic unit (ALU), 8. See also
Logic instructions
Logical address, 42
Logical sector numbers, 416
Long real floating-point format, 381
Loop, defined, 104
Loop counter, count register (CX) as,
41
LOOP instructions, 93, 94, 499-500
high-leve} vs. assembly languages,
104-108
Lowercase letters, converting to upper-
case, 120-121, 287-289
LSEEK, 459
.LST file (source listing file), 72, 259
macro expansion in, 259-261
options for, 261-262
macro library files and, 264

’

M
Machine code, in source listing .(.LST)
file, 72
Machine language, 12
defined, 7
instruction sets, 8
MACRO pseudo-op, 258, 522
Macros, 257-280
conditional, 272-27§
conditional pseudo-ops in, 272-273
defined, 257
expanding, 258

in .LST file, 259-262
assembly errors, 262
IF pseudo op in, 273
IFNB pseudo-op In, 274
illegal invocations, 259
incorrect, .ERR directive for, 275
invoking, 258
invoking other macros with, 263~
264, 270-272
library file for, 264-266
sample program using, 266-267
local labels in, 262-263 - R
optimum-use of, 276
output, 270-272
procedures vs., 257, 276
recursive, 264
repetition, 268-270
role of, 257
syntax for, 257-258 ‘
useful examples, 265-266
Magnetic disks, 11 -
Make code, 245
Mantissa, 380
Masks .
for AND, OR, XOR instructions,
119, 120
for TEST instruction, 122
MASM. See Microsoft Macro Assembler
MB (megbyte), 6
MCGA. See Multi-color graphics array
MDA. See Monochrome display adapter
MEDIUM memory model, 299
Medium resolution mode, CGA, 333,
334-335
«Mega, defined, 6
Megabyte (MB), 6
Megahertz (MHz), 11
Memory
allocating, 460
extended, 426-429
freeing, 460
physical, in 80386, 434, 435
virtual, 38, 426 .
in 80386, 38, 433
Memory (hardware), 4-7
dccess 10, 80286 microprocessor
- and, 38
operations on, &7
Memory byte circuits, 4
addresses of, 4-6 .
contents of, 5
RAM vs. ROM, 7
Memory dumps, DEBUG, 477
" Memory errors, nonmaskable inter-
rupts and, 312 v
Memory location, 6
adding or subtracting contents of,
62-63
clearing, 121
exchanging contents of, 60, 61
IBM PC, 4748
instruction pointer (IP), 45
for interrupt vectors, 311
16%]cal addresses, 42

negating contents of, 64
physical addresses, 41
registers and, 8
FLAGS register, 45
pointer and index registers, 4445
segment register, 41-44
reserved, 47 :
transferring data to and from, 60,
61
virtual addresses, 424-426
Memory management, 281-308
.COM vs. .EXE programs and, 281,
282-285
in 80286, 423-424
program modules and, 285-291
Memory manager programs, 426
Memory map, 48
Memory models, 65, 299
choosing, 299-300
declaration syntax, 65, 299
.MODEL directive for, 65.
Memory protection, protected mode
and, 38
Memory-resident programs. See Tenm~
nate-and-stay-resident programs
Memory segments, 41-42
disjoint, 47
Memory size interrupt (lnterrupt 12h),
313, 453
Memory strings
comparing, 217-222
defined, 205
finding substrings of, 219-222
loading, 211-214
moving, 206-209 -
scanning, 214-217 -
storing, 209-211
Memory word, 6. See also Words
Menus, in Windows program, 430
Messages, inserting in programs, 75

Microcomputer system, components

of, 3-9

Microprocessors, 37-39, 421438

Sce also specific microprocessors

address size and, 5-6 _

data registers in, 39,

.defined, 4

fetch-execute cycle in, 9-10

organization of (8086), 7, 8-9,

39-45
shift or rotate instructions and 122
speed of, 10-11
Microsoft Library Manager, 289—291
Microsoft Macro Assembler (MASM),

461-467 .

command line, 462463

creating machine language file

with, 70, 71-73

example, 464-467

full segment definitions and, 291

LINK program and, 286-289

macros and, 257, 258
“forced error® message, 2. §
invoking other macros, 264

Index 539

library files, 264
local labels, 263
options, 463
segment definitions, 65
syntax for, 54
MKDIR (MD), 448, 458
Mode numbers, for video adapters, 233
selecting, 238 '
.MODEL directive, 65, 299, 522-523
Monitor, 12, 231-232
analog, for VGA, 340
display pages, 234
port addresses for, 48
video adapter and, 232, 233
Monochrome display adapter (MDA),
232,233
attribute bytes for, 235-236, 237
changing cursor size for, 238-239
display memory capacity, 234
Monochrome monitor, 232. See also
Monochrome display
Most significant bit (msb), 26
Motherboard, 4, S
Mouse, for Windows, 430
MOV instruction, 60-61, 500
for clearing a register, AND instruc-
tion vs., 121
flags and, 85, 86
DEBUG example, 88
macro for, 258
in sample program, 75, 76
Moving memory strings, 206-209
MOVS instruction, 223, 224, 500
MOVSB instruction (move string byte),
206208, 223, 224, SO0
MOVSW instruction (move string
word), 208-209,.223, 500
MOVSX instruction (move with sign-
extend), S14
MOVZX instruction (move with zero-
extend), 435, 436, 514
MS DOS, 46. See also DOS
MUL instruction (multiply), 161-164,
501
Multi-color graphics array (MCGA),
232, 233
selecting active display page for, 240
Multiple-precision numbers, with 8087
processor, 384-388 "
Multiplication - B
ASCI!I adjust for (AAM) instruction,
: 378, 491492 0
BCD, 378 &
data register (DX) for, 41 -
double-precision, 374)
with 8087 processor, 384
in 80286, 422, 511
methods for, 127
MUL/IMUL instructions for, 161~
164, 496, 501
procedure for, 150-157
shift instructions for, 117, 122
overflow and, 124
SAL (shift arithmetic left), 124

540 Index

SHL (shift left), 123-124

signed vs. unsigned, 161-162
MULTIPLY procedute, 150-157
Muttitasking, 429

80286 and, 421

protected (virtual address) mode

and, 38, 421
Windows and 0S/2 for, 430

N
Name ftield, in assembly language syn-
tax. 54-55
Named constants, 59
Naturai language, high-level language
and, 13
NEAR procedures, 146, 285-286
RET instruction and, 1+9
NEG (negation) instruction, 64, 501
flags and, 85, 86-87, 89
Negation, double-precision, 373
Negative integers, 26-28
two's complement representation
of, 27-28
Nibbie, 18
Nonmaskable interrupt (NMI), 312
NOIP instruction (no operation), 501
~Normat video, 235
NOT instruction (logical not), 121, 501
NOT truth table, 118
Nuamber systems, 19-22
audition and subtraction in, 24-25
in assembly language programs, 56
converting between, 22-23
Numbers, converting ASCH digits to,
120

o
Object (OB)) files, 285
creating, 70, 73
LINK program for, 73
as MASM output, 461, 466
Object modules, 285
library files for, 289-291
OF (overfiow flag), 82, 83
Offset address of operand
in based indexing addressing mode,
194
obtaining, 184-187
Offset (of memory location), 42
OFFSET pscudo-op, 321
One-dimensional arrays, 179-181

One's complement of binary number,
26

NOT instruction and, 121
Opcode, 9, 55
format for, 489-490
Qpening a file, 403-404
Operand field, in assembly language
syntax, 5§
Operands, 9
of ADD instructions, 62

addressing modes for, 181-189
declaring types of, 187-188
destination vs. source, 55
of 8087 instructions, 384
in instruction format, 489, 490
of MOV instruction, 61, 64
obtaining offset address for,
184-187
overriding type of, 187, 188
of segment declaration, 291-295
of string instructions, 223-224
of SUB instructions, 62
type agreement of, 64, 186€-187
overriding, 187-188
of XCHG instruction, 61
Operating system
1BM PPC, 46-47
muititasking, 429433
role of, 46
in start-up operation, 49
Operation code. See Opcode
Operation field, in assembly language
syntax, 85
Operations, in assembly language syn-
tax, 54
OR conditions, high-level vs. assembly
languages, 103-104
OR instructions (logical inclusive or),
119-121, 501
OR truth table, 118
ORG 100h pseudo-op, in .COM pro-
gram, 282, 523
0S/2 operatir.g system, 429, 430
programming in, 431-433
OUT instruction (output byte or
word), for accessing timer cir-
cuit, 348, 501-502
OUT instruction (output string to
port), 512
OUTDEC procedure, 167-170
Output macros, 270-272
OUTSB instruction (output string
Lyte), 423, 512
OUTSW instruction (output string
word), 423, 512
Overflow, 83-85
divide, 165-166, 310, 312
input, 174
interrupt instruction for (INTO),
497
shift instructions and, 124
Overflow flag (OF), 82, 83
Overflow interrupt (Interrupt 4), 313

P
Packed BCD form, 375
converting ASCI! digits to, 385-386

decimal adjust for addition/subtrac-’

tion, 494-495
8087 numeric processor and; 381~
382, 385-386, 508, 509
printing numbers in, 386-387

Paddle, adding to video game, 350-352
PAGE assembler directive, 524
Page-oriented virtual memory, in
80386, 434
Pages, in EGA mode, 339
Palette registers, EGA, 339
Palettes, 334
setting, 451
Paragraph, 42
Paragraph boundary, 42
Parallel port, 9 .
port address, 48
Parity errors, nonmaskable intenupts
and, 312
Parity flag (PF), 82
PC DOS, 46. See also DOS
%OUT assembler directive, 523
Paripieral devices (peripherals), 3
Personal computers. Se¢ IBM personal
computers
PF (parity flag), 82
Physical address, 41
Physical memory, in 80386, 434, 435
Pixels, 233, 331-332
default color of (background color).
334
reading or writing, 335, 452
Pointer registers, 39, 40
register indirect mode and, 182
POP instructions, 142-143, S02
in 80286, 422
in program example, 151, 152, 156
POPA instruction, in 80286, 422, 512
POPF instructions, 142, 153, 502
Ports, 1/0, 9
port addresses, 48-49
Positional number system, 19-20
Power loss, RAM vs. ROM and, 7
Prefixes, string instruction, REP (re-
peat), 207-208
PRINT (DOS command), 446
Print Screen interrupt (Imerrupt S), 313
Printer, INT 21h functions and, 456
Printer 1/O interrupt (Interrupt 17h),
314-315, 455

- Printers, 12

Printing packed BCD numbers,
386-387
Printing real numbers, with four-digit
fractions, 390-391
Privilege level, 426
PROC pseudo-op (begin procedure),
524
Procedures, 15, 146
beginning and ending, 524
culling, 493. See alsu CALL instruc-
tions
communication between, 147,
300-305
for decimal 1/O, 167-17¢
documenting, 147
macros vs., 257, 276
NEAR vs. FAR, 285-286
recursive, 357, 358-360

activation records and, 361-363
implementation of, 363-366
with multiple calls, 367-369 .
retuming from, 146, 147 148 149
,503-504 | .

separate files for (program mod- -

ules), 285-291 .
syntax of, 146-147, 285-286
using stack with, 303-305, 360-361
Process, in 05/2, 430)
Processor exception, 310 °
Program data, $56-57 ,'
Program execution, tasks vs., 426
Program loop constructions, count reg- ¢
tster (CX) in, 41
tProgram modules, 285-291
Program segment prefix (PSP), 74
Program segments, 44, 65~67
.COM programs and, 281-282
full definitions for, 291.-298
in protected mode, 424426
simplified definitions for, 299-300
Program size, macros vs, procedures
and, 276 .
Program structure, 65-67, 281
.COM programs, 281-28S
Program terminate interrupt (Interrupt -
20h), 316
Programs
See also Assembly language pro-
grams; Software
.COM, 281-285
- CPU and, 7 .
designing, top-down method,
108-112
DOS
for 80286, 424
for 80386, 434—436
firmware (ROM-based), 7
jump example, 93-94
stack segments of, 139 °
terminating, 456
testing. See CODEVIEW program;
DEBUG program :
PtBtected (virtual addsess) mode, 38
in 80286, 421, 424-426
in 80386, 433434
multitasking and, 429
0S$/2 and, 430 ' :
Windows 3 and, 430 - -1
Pseudo-operation code (pseudo-ops), 55 -
ASSUME, 295 -
conditional, 272-273 A
for macro library, 264-265 *
data-defining, S7 ’ o
DUP (duplicate), 180-181 - -~ -
.8087, 387
ELSE, in macros, 272, 273 274, 278
ENDM (end macro definition), 258
EQU (equates), 59, 75 .
= (equal), in REPT macro, 268
EMNTRN, 286 ~ S -
IF1...ENDIF, for macro file, 264-265
INCLUDE, 16%-170

PR o Sy

LABEL (declare operand type), 187~
188 .
LOCAL, for macros, 262-263
MACRO, 258 ° hy
for named constants, 59 , ’
OFFSET, 321 . .
- ORG 100h, 282
PTR (override operand type), 187
188
PUBLIC, 286
SEG, 321
SEGMENT, 291-298 °
.286, 424
.386, 435
PSP (Program segment prefix), 74
ORG 100h and, 282
PTR pseudo-op (override operand
type), 187, 188
PUBLIC pseudo-op, 286, 524
PURGE directive, 524-525 |
PUSH instructions, 140, 141, 502
in 80286, 422, 512
in program example, 151, 152, 153
PUSHA instruction, in 80286, 422,
512-513
PL}SHF instruction, 140, 141, 502

Q . .

Question mark (?), 4s DOS special char-
acter, 445

Quittlng a program, Interrupt 20h for

R
.RADIX asscmbler directive, 525
RAM (random access memory), 7
RCL instruction, 128, 502-503 -
RCR instruction, 129, 503
application example, 130
READ_STR procedure, 209-211.
213-214 '

* Read operations, 6-7

in fetch-execute cycle, 10 °

Read sector

INT 13h for, 453454 -

INT 25h for, 415, 416
Read-only memory. See ROM
Read/write head, 395

Reading from disk, DOS interrupt for, _

460
Readmg a file, 405'
defined,’ 402 -
DOS interrupt for, 459
program for, 406409
Reading graphics pixels, 335, 452
Reading and storing a character string,
209-211 .
Reéal address mode (teal mode), 38 .

7" "in 80286, 421, 423-424

r. 80386, 433
“Real mode, Winc Wmdows‘37(n 430

Jlex 541

Real numbers, 389
8087 operations with, 389-391

’ Rebooting the system, Interrupt 19h

for, 315
RECORD assembler directive, 528
Records, appending to file, $10-414
Recursion, 357-370
Recursive macros, 264
Recursive procedures, 357, 358-360
activation records and, 361-363
implementation of, 363-366
with multiple calls, 367-:69
passing parameters on s‘ack for,
360-361
Recursive process, defined, 357-358
Register indirect mode, 182-183
segment register override in,
188-189
string instructions vs., 203
Register mode, 181, 182
Registers, 8, 39
adding or subtracting contents of,
. 62-63
adding to, 63
clearing, 121
color, 340, 341
double-precision numbers and, 371
in 8086 microprocessor, 39-45. See
. also specific types
in 8087 numeric proccssor, 382
in 80286, 422, 425 :
in 80386, 433 .
exchanging contents of, 60 €1
in instruction format, 489490, 491
in Interrupt routine, 310 °
negating contents of, 64
restoring after macro, 259
stack use vs,, 303-304
. in start-up operation, 49
subtracting from, 63
testing for zero, 121
transferring data between, 60, 61
RENAME (REN), 446
REP instruction (repeat), count register
(CX) for, 41, 50, 503
REP prefix (repeat), 207-208
in 80286, 423 -

" REPE prefix (repeat while equai), in

string comparisons, 218, 219

_"REPEAT loop

high-level vs. assembly language,
107-108
WHILE loop vs., 108
Repetition macros, 268-270
REPNE instruction (repeat while not
equal), in string scanning, 215,
216, 217, 503
REPNZ prefix (repeat while not zero),
215, 503

.~ REPT macro (repeat block of state-

_ . ments), 268-269, 525
REPZ prefix (repeat while zero), in
string comparisons, 218

'Resolutlon, 233, 331

~

542 Index

CGA, 333
EGA, 339
VGA, 340
RESTORE (DOS command), 446
RET instruction (return), 146, 147,
148, 149, 503-504
in program example, 151, 152,
156-157
Return address, in interrupt routine,
310
Reverse video, 235
Rewriting a file, 402, 403-404
RGB monitor, 232
RMDIR (RD), 448, 458
ROL instruction (rotate left), 126, 127,
128, S04
ROM (read-only memory), 7
BIOS interrupt routines in, 310,
312-316
ROM-based programs (firmware), 7
" memory segment for, 48
ROM BASIC, transferring control to,
318
Root directory, 400
ROR instruction (rotate right), 127~
128, 504
Rotate instructions, 117, 122, 127-130,
502-503, S04
application examples, 130-134
applying, reversing bit pattern, 130
in 80286, 422
role of, 117)
Row-major ordet, array storage in,
192-193
Run file, creating and executing, 70,.73

s .

SAHF instruction (store AH in FLAGS
register), 505

SAL instruction (shift arithmetic left),

'. 124, 504-50S

.SALL (suppress all), for macro expan-
sions, 261; 262, 525

SAR instruction (shift arithmetic right),
125, 126, 505

SBB instruction (subtract with borrow),'-

372, 373, 505
Scan codes
keyboard and, 33, 245-246,
527-529
keyboard buffer and, 246
Scan lines, 331
Scanning memory strings, 214-217
SCAS instruction, 223, 505
SCASB instruction (scan string byte),
214-217, 223, 505
SCASW instruction: (scan string word),
214, 508 -
Screen display. See Display; Monitot
Screen editor, sample program,
247-252

Scrolling screen or window up/down,
240-241, 450-451
Searching, for substrings of strings,
219-222
Secret message, coding and decodmg,
198-200
Sectors, 397
logical, 416
reading, program for, 416417
SEG pseudo-op, 321
Segment:offset form of address (logical
addrcss), 42-43
Segment definitions *
full form of, 291-298 .
simplified, 299-300
Segment descriptor, 425, 426
in 80386, 433
Segment descriptor tables, 424425
Segment directive, 291-292
Segment number, 42
Segment overrides, 188-189
SEGMENT pseudo-op, 291-298, 525
Segment registers, 39, 41-44, 499. See
also Program segments
Segment selector, in protected mode,
424, 425
Segments. See Program segments
SELECT procedure, for sorting an ar-
- ray, 190-191
Selectsort method, 189-192
Semicolons
in assembly language programs, 14,
55
is assembler instructions, 72
.SEQ assembler directive, 526
Serial ports, 9
port addresses, 48
Set (destination bit), OR instruction
for, 119, 120
Set byte on condition instructions,
514-515
SF (sign flag), 82, 83
Shift instructions, 117, 122-127
application examples, 130~134
applying, reversing bit pattern, 130
division by, 117, 122, 125-127, 374
double-precision, 374, 515-516
in 80286, 422
multiplication by, 117, 122, 123~

= 124, 374

overflow and, 124

role of, 117, 122

SAL (shift arithemtic right), 124
504-50$

SAR (shift arithmetic right), 125,
126, 508

SHL (shift logical left), 123-124,
504-50S

SHR (shift Iogncal right), 125, 126,
506

Shift keys, 245§
information stored on, 245-246
scan codes for, 245

SHL instruction (shift left), 123-124
504-50S
application example, 130
Short real floating-point format, 381
SHR instruction (shift right), 125, 126,
506
SI (source index) register, 45
Sign flag (SF), 82, 83
Signed integers, 26-28
decimal interpretation, 28-30
division by IDIV instruction, 165-
167, 496 .
division by right shifts, 126
8087 support, 381
multiplication by IMUL instruction,
161-162, 496
Signed jumps, 95, 96, 97
Signed overflow, 83, 84, 85
Single step interrupt (Interrupt 1), 312
Single-flag jumps, 95, 96
16-bit programming, 434
16-color display, attribute byte for, 235
.SMALL model, 67, 299-300
Software, 45
programming languages, 12-14
Software interrupts, 310
Sorting arrays, selectsort method,
189-192
Sound, adding, 347-350
Source index (SI) register, 45
Source listing file. See .LST file
Source operand, S5
Source program file, creating, 70-71
SP (stack pointer) register, 44 .
Special characters, with DOS com-
mands, 445
Stack, 44, 139
accessing or placing items on, 189,
303-305, 360-361
adding to (PUSH/PUSHF instruc-
tions), 140-141
application example, 144-145
in .COM vs. .EXE programs,
282-283
8087 data registers as, 382
empty, 140 .
removing items from (POP/POPF in-
- structions), 142-143
top of, 139
STACK directive, 66, 299, 526
in sample program, 76
Stack pointer (SP) register, 44
Stack seginent, 15, 44
.COM programs and, 281
declaring, 140
syntax for, 66
Standard mode, Windows 3 in, 430
Start-up operation, IBM PC, 49
Statements
in assembly language programs, 14 f
assembly language syntax, 54
Status byte, in file directory, 420
Status flags, 45, 81, 82-83, 205
DERUIG examnle. 88. 89

DIV/IDIV instructions and, 165
jump instructions and, 95
MUL/IMUL lnstructions and, 162
Status registers, 39
STC instruction (set carry flag), 506
STD instruction (set duection ﬂag)
206, 506

STI instruction (set interrupt flag), 506 -

Storage, magnetic disks, 11
Storing memory strings, 209-211"
STOS instruction, 223, 506
STOSB instruction (store string byte),
209-211, 223, 506
STOSW instruction (store string word),
. 209, 223,506
String, defined, 205. See also Charac-
ter strings; Memory strings
String instructions, 205-228
CMPS, 223, 494
CMPSB (compare string byte), 217-
222, 494
CMPSW (compare string word),
217, 494

»

direction flags and, 205-206 '

in 80286, 423
general form of, 223-224
INSB (input string byte), 423
INSW (input string word), 423
LODS, 499
LODSB (load string byte), 211-214,
- 499
LODSW (load string word), 211, .
499
MOVSB (move string byte), 206-
208, 500
REP prefix and, 207-208
MOVSW (move string word), 208~
209, 500
OUTSB (output string byte), 423
OUTSW (output string word), 423
register indirect addressing mode
vs., 205
REP prefix (repeat), 207-208
SKAS, 505
SCASB (scan string byte), 214-217,
505
SCASW (scan string word), 214, 505
STOS, 223, 506
STOSB (store string byte), 209-211,
506
STOSW (store string word), 209, 506
String operations
count register (CX) for, 41
DI (destination index) and, 45
Strings, 20S: See Character strings;
Memory strings
STRUC assembler directive, 526
Structure, declaring (STRUC directive),
526
SUB instruction, 62-63, 507
for Slearing a register, AND instruc-
“tion vs,, 121
flags and
DEBUG example, 89

overflow, 84, 85, 86
in sample program, 75, 76
Subdirectories, 400 .
managing, 448, 458,
Substrings, searching for, 219-222
Subtraction
ASCII adjust for (AAS) instruction,
377-378, 492
BCD, 377-378, 495)
by bit complementation and addi-
tion, 28

* decimal adjust IB;I(DAS instruc- . o

tion), 495 °
double-precision, 372, 373
with 8087 processor, 384
~ instructions, 62-63, 377—378 492,
505, 507
number systems and, 24—25 .
. overflow and, 84-85
real (FSUB instruction), 384,
510-511 -
SUBTTL instruction (subtitle dlsplay)
526
SWAP procedure, for somng an array,
190-191 .
Symbol table (MASM), 464
Syntax
assembly language, $4-56 ‘.
based and indexed addressing
modes, 184
input/output instructions, 6769
procedure declaration, 146-147
System board, 4 .
System reboot, Inter;upt 19h for 315

T - ‘.f

. Tasks, in protected mode, 426

Teletype mode, writing character in,
452 .
Temporary real ﬂoatmg pomt format,
381
Terminate-and-stay-resident (TSR) pro-
grams, 322
for time display, 322-329
Terminate-but-stay-resident interrupt
(Interrupt 27h), 316, 460
Terminating a process (EXIT), Interrupt
21h for, 460
Terminating a program, Interrupt 20h
for, 316
TEST instruction, 122, 507
Test scores, averaging, 195-197
Text, displaying in graphics mode,
CGA, 338-339
Text mode, 232
character generation in, 233
display pages in, 234
graphics mode vs., 338
mode numbers, 233
programming, 234-244
INT 10h functions, 238-244
video adapter and, 233

ncex 543

h
TF (trap flag), in interrupt routine, 312
32-bit programming, 434 '
Thread, in 0§/2, 430 .
. 386 enhanced mode, Windows 3in,
430 See also 80386 microproces-

386 pseudo-op, 435

Time, INT 21h functions. and 457

TIME (DOS command), 447

Time of day interrupt (Interrupt 1Ah),
315

.

. Time display

program for, 316-318
program for updating, 318-322
TSR program for, 322-329 °
Timer circuit, for tone generatlon
347-348
Timer interrupt (Interrupt 8), 313
Timer tick count, Interrupt 1Ah and,
315
Timer tick interrupt (Imerrupt ICh),
316
time updating program with,
318-322
TITLE assembler directive, 526
Tone generation, 347-350 -
Top of the stack, 139 .
Top-down program design, 108 112
procedures in, 146
Tracepoints, in CODEVIEW, 480—-487
Tracks, 395, 397
Translating character codes. See XLAT
: instruction
Trap flag (TF), in interrupt routine, 312
Truth tables, for logic operators, 118
TSR programs. Sce Terminate-and-stay-
resident programs
.286 pseudo-op, 424
Two-dimensional arrays, 179, 192-194
based indexed addressing mode for,
194-195
locating elements in, 193-194
storage order for, 192-193
in test score averaging program, 196
Two’s complement of a binary num-
ber, 27-28
double-precision negation and, 373
TYPE (DOS command), 447
Typeahcad buffer. Sve Keyboard buffer

[7)
Unconditonal §MP) jump instructions,
98

Underline characters, 236, 237

UNLINK, DOS interrupt for, 459

Unpacked BCD form, 375

Unsigned integers, 26 :
decimal interpretation, 28-30
division by DIV instruction, 165~

166, 495

division by right shifts, 126

544 Index

multiplication by MUL instruction,
161-162, 501
Unsigned jumps, 95, 96, 97
Unsigned overﬂo‘.?, 83, 84
" Uppercase letters, converting to lower-
case, 120-121, 287-289

User comimands (DOS), 46 °
User interrupt procedures, 318-329

v
Variables, 57-59
arrays, 58-59
base address of, 180
one-dimensional, 179-181
byte, 57
cross-reference file and, 72
global, 300-302
word, 57-58
VGA. See Video graphics array
Video adapters, 12, 232, 233
graphics display modes, 332
scan lines and, 331
Video buffe:. See Display memory
. Video controller, 232
display modes and, 232-233
Video display. See Display; specific types
Video display memory, 47
segments for, 48
Video game, interactive, 347-355
Video graphics atay (VGA), 232, 233
graphics display modes, 332,
330-341
number of display pages for, 234
selecting active display page for, 240
Video interrupt (Interrupt 10h), 313,
332, 449-453
for palette or background color,
CGA, 334
for reading/writing graphics pixels,
CGA, 335

for selecting cilsplay page (EGA),
340

for setting color register, 341
Video modes. See¢ Display modes
Virtual address mode. Sce Protected

mode
Virtual addresses, 424-426
Virtual 8086 mode, 35, 434
Virtual memory, 426

access to, 38

in 80386, 38, 433
Virtual program segments, 426
Vowels, counting, 215-217

w
WAIT instruction, 507
Watch commands, in CODEVIEW,
482487
Watchpoints, in CODEVIEW, 487
WHILE loop
high-level vs. assembly larguage,
106-107
REPEAT loop vs., 108
Wildcard characters, with DOS com-
mands, 445
Window
defined, 430
scrolling up or down, 240-241,
450451
Window mode display, in CODEVIEW,
480-481
windows 3 cnvironment, 429, 430
Word arrays. See Strings
Word varlables, 57-58
high and low bytes of, S8
moving word into word, invoking
macro for, 258
Words
bit positions in, 6
changing bit patterns in, 117

converting bytes to, 167, 493
converting to déublewords, 166~
167, 494

defined, 6

dividing, 165, 166-167

double-precision numbers and, 371

- integer storage in, 26-28

moving into words, macro for, 258

multiplying, 162
Write operations, 6, 7

in fetch-execute cycle, 10
Write sector

INT 13h for, 454

INT 26h for, 415
Write-protect notch, 396, 397
Writing to disk, DOS interrupt for, 460
Writing a file, 406

defined, 402

DOS interrupt for, 459
Wiriting graphics pixels, 335, 452

X

XALL, for macro expansions, 261,
262, 526

XCHG instruction (exchange), 60, 61,
507

flags and, 85)

.XCREF (cross-reference file), 518, 526

XLAT instruction (translate), 179, 197~
200, 507

.XLIST assembler directives, $22, 526

XOR instruction, 119-121, 508

XOR truth table, 118

Zero, testing register for, 121
Zero flag (ZF), 45, 82, 83

ISBN 0-07-1328%9%k-4:

7800 4’|

ILLI ;

	Assembly Language Programming & Organization of the IBM PC
	Contents
	Preface
	Part One Elements of Assembly Language Programming
	1. Microcomputer Systems
	2. Representation Of Numbers & Characters
	3. Organization of the IBM Personal Computers
	4. Introduction to IBM PC Assembly Language
	5. The Processor Status & the FLAGS Register
	6. Flow Control Instructions
	7. Logic, Shift, & Rotate Instruction
	8. The Stack & Introduction to Procedures
	9. Multiplication & Division Instruction
	10. Arrays & Addressing Modes
	11. The String Instructions
	Part Two Advanced Topics
	12. Text Display & Keyboard Programming
	13. Macros
	14. Memory Management
	15. BIOS & DOS Interrupts
	16. Color Graphics
	17. Recursion
	18. Advanced Arithmetic
	19. Disk & File Operations
	20. Intel's Advanced Microprocessors
	Part Three Appendices
	A IBM Display Codes
	B DOS Commands
	C BIOS & DOS Interrupts
	D MASM & LINK Options
	E DEBUG & CODEVIEW
	F Assembly Instruction Set
	G Assembler Directives
	H Keyboard Scan Codes
	Index

